Real-time prediction models for remaining cold start time in proton exchange membrane fuel cell based on stack temperature
In order to mitigate the irreversible damage caused by cold start and preserve cell performance, this paper proposes a real-time prediction method based on the remaining cold start time of the proton exchange membrane fuel cell (PEMFC). This method can protect the cell by referencing the current col...
Hlavní autoři: | Huiying Zhang, Yuhang Wang, Suoying He, Ming Gao |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
Elsevier
2023-12-01
|
Edice: | Case Studies in Thermal Engineering |
Témata: | |
On-line přístup: | http://www.sciencedirect.com/science/article/pii/S2214157X23010006 |
Podobné jednotky
-
Machine Learning Prediction of Fuel Cell Remaining Life Enhanced by Variational Mode Decomposition and Improved Whale Optimization Algorithm
Autor: Zerong Huang, a další
Vydáno: (2024-09-01) -
A Review on Cold Start of Proton Exchange Membrane Fuel Cells
Autor: Zhongmin Wan, a další
Vydáno: (2014-05-01) -
Urban cold-chain logistics demand predicting model based on improved neural network model
Autor: Chen Ying, a další
Vydáno: (2020-01-01) -
A Flexible Two-Tower Model for Item Cold-Start Recommendation
Autor: Won-Min Lee, a další
Vydáno: (2023-01-01) -
Application of self-adaptive temperature recognition in cold-start of an air-cooled proton exchange membrane fuel cell stack
Autor: Xianxian Yu, a další
Vydáno: (2022-08-01)