Soil Moisture Model with Multi Angle and Multi Polarisation Risat-1 Data

Multi dimensional data (multi frequency, incident angle and polarisation) measurements of σ<sub>0</sub> provided better estimates of soil moisture over those derived from single. This particular paper explains a new methodology for soil moisture estimation with the use of multi angle and...

Full description

Bibliographic Details
Main Authors: S. S. Rao, D. K. Sahadevan, M. R. Wadodkar, M. S. S. Nagaraju, S. Chattaraj, W. Joseph, P. Rajankar, T. Sengupta, M. V. Venugopalan, S. N. Das, A. K. Joshi, J. R. Sharma, E. Amminedu
Format: Article
Language:English
Published: Copernicus Publications 2014-11-01
Series:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-8/145/2014/isprsannals-II-8-145-2014.pdf
Description
Summary:Multi dimensional data (multi frequency, incident angle and polarisation) measurements of σ<sub>0</sub> provided better estimates of soil moisture over those derived from single. This particular paper explains a new methodology for soil moisture estimation with the use of multi angle and multi polarisation RISAT-1 data. The roughness component was derived by correlating root mean square height with the differences of cross polarisation and like polarisation backscatter values (σ <sub><i>HV</i></sub> - σ <sub><i>HH</i></sub>) and differences of low and high incidence backscatter values (σ <sub><i>HH</i></sub> high (θ) - σ <sub><i>HH</i></sub> Low). The derived roughness was inputted to the modified dubois model (MDM). The results show both the σ HV - σ <sub><i>HH</i></sub> & σ <sub><i>HH</i></sub> high (θ) - σ <sub><i>HH</i></sub> Low are sensitive to roughness. The derived soil moisture using the MDM model is shows reasonable correlation with ground soil moisture.
ISSN:2194-9042
2194-9050