Machine Learning-Aided High-Throughput First-Principles Calculations to Predict the Formation Energy of μ Phase
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Chemical Society
2023-09-01
|
Series: | ACS Omega |
Online Access: | https://doi.org/10.1021/acsomega.3c05146 |
_version_ | 1797662475306401792 |
---|---|
author | Yue Su Jiong Wang You Zou |
author_facet | Yue Su Jiong Wang You Zou |
author_sort | Yue Su |
collection | DOAJ |
first_indexed | 2024-03-11T19:00:42Z |
format | Article |
id | doaj.art-b06620ba233d4efbb6730978f3481d0a |
institution | Directory Open Access Journal |
issn | 2470-1343 |
language | English |
last_indexed | 2024-03-11T19:00:42Z |
publishDate | 2023-09-01 |
publisher | American Chemical Society |
record_format | Article |
series | ACS Omega |
spelling | doaj.art-b06620ba233d4efbb6730978f3481d0a2023-10-10T13:22:09ZengAmerican Chemical SocietyACS Omega2470-13432023-09-01840373173732810.1021/acsomega.3c05146Machine Learning-Aided High-Throughput First-Principles Calculations to Predict the Formation Energy of μ PhaseYue Su0Jiong Wang1You Zou2State Key Laboratory of Powder Metallurgy, Central South University, Changsha, ChinaState Key Laboratory of Powder Metallurgy, Central South University, Changsha, ChinaInformation and Network Center, Central South University, Changsha, Chinahttps://doi.org/10.1021/acsomega.3c05146 |
spellingShingle | Yue Su Jiong Wang You Zou Machine Learning-Aided High-Throughput First-Principles Calculations to Predict the Formation Energy of μ Phase ACS Omega |
title | Machine Learning-Aided High-Throughput First-Principles Calculations to Predict the Formation Energy of μ Phase |
title_full | Machine Learning-Aided High-Throughput First-Principles Calculations to Predict the Formation Energy of μ Phase |
title_fullStr | Machine Learning-Aided High-Throughput First-Principles Calculations to Predict the Formation Energy of μ Phase |
title_full_unstemmed | Machine Learning-Aided High-Throughput First-Principles Calculations to Predict the Formation Energy of μ Phase |
title_short | Machine Learning-Aided High-Throughput First-Principles Calculations to Predict the Formation Energy of μ Phase |
title_sort | machine learning aided high throughput first principles calculations to predict the formation energy of μ phase |
url | https://doi.org/10.1021/acsomega.3c05146 |
work_keys_str_mv | AT yuesu machinelearningaidedhighthroughputfirstprinciplescalculationstopredicttheformationenergyofmphase AT jiongwang machinelearningaidedhighthroughputfirstprinciplescalculationstopredicttheformationenergyofmphase AT youzou machinelearningaidedhighthroughputfirstprinciplescalculationstopredicttheformationenergyofmphase |