A Spatiotemporal Intelligent Framework and Experimental Platform for Urban Digital Twins

This work emphasizes the current research status of the urban Digital Twins to establish an intelligent spatiotemporal framework. A Geospatial Artificial Intelligent (GeoAI) system is developed based on the Geographic Information System and Artificial Intelligence. It integrates multi-video technolo...

Full description

Bibliographic Details
Main Authors: Jinxing Hu, Zhihan Lv, Diping Yuan, Bing He, Wenjiang Chen, Xiongfei Ye, Donghao Li, Ge Yang
Format: Article
Language:English
Published: KeAi Communications Co., Ltd. 2023-06-01
Series:Virtual Reality & Intelligent Hardware
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2096579622000936
_version_ 1827923374686339072
author Jinxing Hu
Zhihan Lv
Diping Yuan
Bing He
Wenjiang Chen
Xiongfei Ye
Donghao Li
Ge Yang
author_facet Jinxing Hu
Zhihan Lv
Diping Yuan
Bing He
Wenjiang Chen
Xiongfei Ye
Donghao Li
Ge Yang
author_sort Jinxing Hu
collection DOAJ
description This work emphasizes the current research status of the urban Digital Twins to establish an intelligent spatiotemporal framework. A Geospatial Artificial Intelligent (GeoAI) system is developed based on the Geographic Information System and Artificial Intelligence. It integrates multi-video technology and Virtual City in urban Digital Twins. Besides, an improved small object detection model is proposed: YOLOv5-Pyramid, and Siamese network video tracking models, namely MPSiam and FSSiamese, are established. Finally, an experimental platform is built to verify the georeferencing correction scheme of video images. The experimental results show that the Multiply-Accumulate value of MPSiam is 0.5B, and that of ResNet50-Siam is 4.5B. Besides, the model is compressed by 4.8 times. The inference speed has increased by 3.3 times, reaching 83 Frames Per Second. 3% of the Average Expectation Overlap is lost. Therefore, the urban Digital Twins-oriented GeoAI framework established here has excellent performance for video georeferencing and target detection problems.
first_indexed 2024-03-13T04:55:50Z
format Article
id doaj.art-b06bc5da91754b4e980ac21ff1542d8a
institution Directory Open Access Journal
issn 2096-5796
language English
last_indexed 2024-03-13T04:55:50Z
publishDate 2023-06-01
publisher KeAi Communications Co., Ltd.
record_format Article
series Virtual Reality & Intelligent Hardware
spelling doaj.art-b06bc5da91754b4e980ac21ff1542d8a2023-06-18T05:01:31ZengKeAi Communications Co., Ltd.Virtual Reality & Intelligent Hardware2096-57962023-06-0153213231A Spatiotemporal Intelligent Framework and Experimental Platform for Urban Digital TwinsJinxing Hu0Zhihan Lv1Diping Yuan2Bing He3Wenjiang Chen4Xiongfei Ye5Donghao Li6Ge Yang7Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, ChinaDepartment of Game Design, Faculty of Arts, Uppsala University, Sweden; Corresponding author.Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Urban Public Safety and Technology Institute Co.Ltd, Shenzhen 518172, ChinaShenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, ChinaShenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Urban Public Safety and Technology Institute Co.Ltd, Shenzhen 518172, ChinaShenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Urban Public Safety and Technology Institute Co.Ltd, Shenzhen 518172, ChinaShenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, ChinaShenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, ChinaThis work emphasizes the current research status of the urban Digital Twins to establish an intelligent spatiotemporal framework. A Geospatial Artificial Intelligent (GeoAI) system is developed based on the Geographic Information System and Artificial Intelligence. It integrates multi-video technology and Virtual City in urban Digital Twins. Besides, an improved small object detection model is proposed: YOLOv5-Pyramid, and Siamese network video tracking models, namely MPSiam and FSSiamese, are established. Finally, an experimental platform is built to verify the georeferencing correction scheme of video images. The experimental results show that the Multiply-Accumulate value of MPSiam is 0.5B, and that of ResNet50-Siam is 4.5B. Besides, the model is compressed by 4.8 times. The inference speed has increased by 3.3 times, reaching 83 Frames Per Second. 3% of the Average Expectation Overlap is lost. Therefore, the urban Digital Twins-oriented GeoAI framework established here has excellent performance for video georeferencing and target detection problems.http://www.sciencedirect.com/science/article/pii/S2096579622000936Spatiotemporal Intelligenceurban Digital TwinsGeographic Information SystemArtificial IntelligenceSmall Target Detection
spellingShingle Jinxing Hu
Zhihan Lv
Diping Yuan
Bing He
Wenjiang Chen
Xiongfei Ye
Donghao Li
Ge Yang
A Spatiotemporal Intelligent Framework and Experimental Platform for Urban Digital Twins
Virtual Reality & Intelligent Hardware
Spatiotemporal Intelligence
urban Digital Twins
Geographic Information System
Artificial Intelligence
Small Target Detection
title A Spatiotemporal Intelligent Framework and Experimental Platform for Urban Digital Twins
title_full A Spatiotemporal Intelligent Framework and Experimental Platform for Urban Digital Twins
title_fullStr A Spatiotemporal Intelligent Framework and Experimental Platform for Urban Digital Twins
title_full_unstemmed A Spatiotemporal Intelligent Framework and Experimental Platform for Urban Digital Twins
title_short A Spatiotemporal Intelligent Framework and Experimental Platform for Urban Digital Twins
title_sort spatiotemporal intelligent framework and experimental platform for urban digital twins
topic Spatiotemporal Intelligence
urban Digital Twins
Geographic Information System
Artificial Intelligence
Small Target Detection
url http://www.sciencedirect.com/science/article/pii/S2096579622000936
work_keys_str_mv AT jinxinghu aspatiotemporalintelligentframeworkandexperimentalplatformforurbandigitaltwins
AT zhihanlv aspatiotemporalintelligentframeworkandexperimentalplatformforurbandigitaltwins
AT dipingyuan aspatiotemporalintelligentframeworkandexperimentalplatformforurbandigitaltwins
AT binghe aspatiotemporalintelligentframeworkandexperimentalplatformforurbandigitaltwins
AT wenjiangchen aspatiotemporalintelligentframeworkandexperimentalplatformforurbandigitaltwins
AT xiongfeiye aspatiotemporalintelligentframeworkandexperimentalplatformforurbandigitaltwins
AT donghaoli aspatiotemporalintelligentframeworkandexperimentalplatformforurbandigitaltwins
AT geyang aspatiotemporalintelligentframeworkandexperimentalplatformforurbandigitaltwins
AT jinxinghu spatiotemporalintelligentframeworkandexperimentalplatformforurbandigitaltwins
AT zhihanlv spatiotemporalintelligentframeworkandexperimentalplatformforurbandigitaltwins
AT dipingyuan spatiotemporalintelligentframeworkandexperimentalplatformforurbandigitaltwins
AT binghe spatiotemporalintelligentframeworkandexperimentalplatformforurbandigitaltwins
AT wenjiangchen spatiotemporalintelligentframeworkandexperimentalplatformforurbandigitaltwins
AT xiongfeiye spatiotemporalintelligentframeworkandexperimentalplatformforurbandigitaltwins
AT donghaoli spatiotemporalintelligentframeworkandexperimentalplatformforurbandigitaltwins
AT geyang spatiotemporalintelligentframeworkandexperimentalplatformforurbandigitaltwins