A Ceramic Diffusion Bonding Method for Passive LC High-Temperature Pressure Sensor

Alumina ceramic is a highly promising material for fabricating high-temperature pressure sensors. In this paper, a direct bonding method for fabricating a sensitive cavity with alumina ceramic is presented. Alumina ceramic substrates were bonded together to form a sensitive cavity for high-temperatu...

Full description

Bibliographic Details
Main Authors: Chen Li, Boshan Sun, Yanan Xue, Jijun Xiong
Format: Article
Language:English
Published: MDPI AG 2018-08-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/18/8/2676
Description
Summary:Alumina ceramic is a highly promising material for fabricating high-temperature pressure sensors. In this paper, a direct bonding method for fabricating a sensitive cavity with alumina ceramic is presented. Alumina ceramic substrates were bonded together to form a sensitive cavity for high-temperature pressure environments. The device can sense pressure parameters at high temperatures. To verify the sensitivity performance of the fabrication method in high-temperature environments, an inductor and capacitor were integrated on the ceramic substrate with the fabricated sensitive cavity to form a wireless passive LC pressure sensor with thick-film integrated technology. Finally, the fabricated sensor was tested using a system test platform. The experimental results show that the sensor can realize pressure measurements above 900 °C, confirming that the fabricated sensitive cavity has excellent sealing properties. Therefore, the direct bonding method can potentially be used for developing all-ceramic high-temperature pressure sensors for application in harsh environments.
ISSN:1424-8220