Intelligent Optical Temperature Sensor based on Polyglycerol Dendrimer Microspheres Encapsulating Hopeites

Abstract Optical thermometry is a growing technological field which exploits the ability of certain materials to change their optical properties with temperature. In this work, poly(glycerol dendrimer) microspheres (PGLyD) encapsulating cobalt-doped hopeite (CoHo) was synthesized for its potential u...

Full description

Bibliographic Details
Main Authors: Mayara Lima Peres de Oliveira, Estácio Tavares Wanderley Neto, Alfredo Antonio Alencar Exposito De Queiroz, Alvaro Antonio Alencar de Queiroz
Format: Article
Language:English
Published: Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol) 2021-06-01
Series:Materials Research
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392021000400226&tlng=en
Description
Summary:Abstract Optical thermometry is a growing technological field which exploits the ability of certain materials to change their optical properties with temperature. In this work, poly(glycerol dendrimer) microspheres (PGLyD) encapsulating cobalt-doped hopeite (CoHo) was synthesized for its potential use as optical thermometer. The structure of the CoHo:PGLyD was studied using scanning electron microscopy (SEM), infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). On the basis of SEM images, the CoHo:PGLyD exhibited a spherical shape in which around 80% of the microspheres were within 0.82 µm. A multilayer feed-forward artificial neural network (MLP-ANN) was used to extract the chromaticity profile dependence of the CoHo:PGLyD with temperature. A color change was observed for the CoHo:PGLyD, going from dark blue (490-550 nm) to pale pink (650 nm) when the temperature changed from 20-200 °C, respectively. These results suggest that CoHo:PGLyD is a promising material for temperature sensing applications.
ISSN:1516-1439