Eigenvectors of the De-Rham Operator

We aim to examine the influence of the existence of a nonzero eigenvector <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula> of the de-Rham ope...

Full description

Bibliographic Details
Main Authors: Nasser Bin Turki, Sharief Deshmukh, Gabriel-Eduard Vîlcu
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/24/4942
_version_ 1797380147024756736
author Nasser Bin Turki
Sharief Deshmukh
Gabriel-Eduard Vîlcu
author_facet Nasser Bin Turki
Sharief Deshmukh
Gabriel-Eduard Vîlcu
author_sort Nasser Bin Turki
collection DOAJ
description We aim to examine the influence of the existence of a nonzero eigenvector <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula> of the de-Rham operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Γ</mo></semantics></math></inline-formula> on a <i>k</i>-dimensional Riemannian manifold <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>N</mi><mi>k</mi></msup><mo>,</mo><mi>g</mi><mo>)</mo></mrow></semantics></math></inline-formula>. If the vector <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula> annihilates the de-Rham operator, such a vector field is called a de-Rham harmonic vector field. It is shown that for each nonzero vector field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula> on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>N</mi><mi>k</mi></msup><mo>,</mo><mi>g</mi><mo>)</mo></mrow></semantics></math></inline-formula>, there are two operators <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>ζ</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="sans-serif">Ψ</mi><mi>ζ</mi></msub></semantics></math></inline-formula> associated with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula>, called the basic operator and the associated operator of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula>, respectively. We show that the existence of an eigenvector <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Γ</mo></semantics></math></inline-formula> on a compact manifold <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>N</mi><mi>k</mi></msup><mo>,</mo><mi>g</mi><mo>)</mo></mrow></semantics></math></inline-formula>, such that the integral of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Ric</mi><mo>(</mo><mi>ζ</mi><mo>,</mo><mi>ζ</mi><mo>)</mo></mrow></semantics></math></inline-formula> admits a certain lower bound, forces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>N</mi><mi>k</mi></msup><mo>,</mo><mi>g</mi><mo>)</mo></mrow></semantics></math></inline-formula> to be isometric to a <i>k</i>-dimensional sphere. Moreover, we prove that the existence of a de-Rham harmonic vector field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula> on a connected and complete Riemannian space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>N</mi><mi>k</mi></msup><mo>,</mo><mi>g</mi><mo>)</mo></mrow></semantics></math></inline-formula>, having <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>div</mi><mfenced open="(" close=")"><mi>ζ</mi></mfenced><mo>≠</mo><mn>0</mn></mrow></semantics></math></inline-formula> and annihilating the associated operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="sans-serif">Ψ</mi><mi>ζ</mi></msub></semantics></math></inline-formula>, forces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>N</mi><mi>k</mi></msup><mo>,</mo><mi>g</mi><mo>)</mo></mrow></semantics></math></inline-formula> to be isometric to the <i>k</i>-dimensional Euclidean space, provided that the squared length of the covariant derivative of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula> possesses a certain lower bound.
first_indexed 2024-03-08T20:34:08Z
format Article
id doaj.art-b07b18b1ced54210995ec1e6d01b0d0f
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-08T20:34:08Z
publishDate 2023-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-b07b18b1ced54210995ec1e6d01b0d0f2023-12-22T14:23:22ZengMDPI AGMathematics2227-73902023-12-011124494210.3390/math11244942Eigenvectors of the De-Rham OperatorNasser Bin Turki0Sharief Deshmukh1Gabriel-Eduard Vîlcu2Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi ArabiaDepartment of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi ArabiaDepartment of Mathematics and Informatics, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independenţei, 060042 Bucharest, RomaniaWe aim to examine the influence of the existence of a nonzero eigenvector <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula> of the de-Rham operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Γ</mo></semantics></math></inline-formula> on a <i>k</i>-dimensional Riemannian manifold <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>N</mi><mi>k</mi></msup><mo>,</mo><mi>g</mi><mo>)</mo></mrow></semantics></math></inline-formula>. If the vector <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula> annihilates the de-Rham operator, such a vector field is called a de-Rham harmonic vector field. It is shown that for each nonzero vector field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula> on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>N</mi><mi>k</mi></msup><mo>,</mo><mi>g</mi><mo>)</mo></mrow></semantics></math></inline-formula>, there are two operators <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>ζ</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="sans-serif">Ψ</mi><mi>ζ</mi></msub></semantics></math></inline-formula> associated with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula>, called the basic operator and the associated operator of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula>, respectively. We show that the existence of an eigenvector <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Γ</mo></semantics></math></inline-formula> on a compact manifold <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>N</mi><mi>k</mi></msup><mo>,</mo><mi>g</mi><mo>)</mo></mrow></semantics></math></inline-formula>, such that the integral of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Ric</mi><mo>(</mo><mi>ζ</mi><mo>,</mo><mi>ζ</mi><mo>)</mo></mrow></semantics></math></inline-formula> admits a certain lower bound, forces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>N</mi><mi>k</mi></msup><mo>,</mo><mi>g</mi><mo>)</mo></mrow></semantics></math></inline-formula> to be isometric to a <i>k</i>-dimensional sphere. Moreover, we prove that the existence of a de-Rham harmonic vector field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula> on a connected and complete Riemannian space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>N</mi><mi>k</mi></msup><mo>,</mo><mi>g</mi><mo>)</mo></mrow></semantics></math></inline-formula>, having <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>div</mi><mfenced open="(" close=")"><mi>ζ</mi></mfenced><mo>≠</mo><mn>0</mn></mrow></semantics></math></inline-formula> and annihilating the associated operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="sans-serif">Ψ</mi><mi>ζ</mi></msub></semantics></math></inline-formula>, forces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>N</mi><mi>k</mi></msup><mo>,</mo><mi>g</mi><mo>)</mo></mrow></semantics></math></inline-formula> to be isometric to the <i>k</i>-dimensional Euclidean space, provided that the squared length of the covariant derivative of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula> possesses a certain lower bound.https://www.mdpi.com/2227-7390/11/24/4942de-Rham operatoreigenvector<i>k</i>-sphere <named-content content-type="inline-formula"><inline-formula><mml:math display="block" id="mm900"><mml:semantics><mml:mrow><mml:msubsup><mml:mi>S</mml:mi><mml:mi>c</mml:mi><mml:mi>k</mml:mi></mml:msubsup></mml:mrow></mml:semantics></mml:math></inline-formula></named-content>Ricci curvaturemanifoldharmonic vector field
spellingShingle Nasser Bin Turki
Sharief Deshmukh
Gabriel-Eduard Vîlcu
Eigenvectors of the De-Rham Operator
Mathematics
de-Rham operator
eigenvector
<i>k</i>-sphere <named-content content-type="inline-formula"><inline-formula><mml:math display="block" id="mm900"><mml:semantics><mml:mrow><mml:msubsup><mml:mi>S</mml:mi><mml:mi>c</mml:mi><mml:mi>k</mml:mi></mml:msubsup></mml:mrow></mml:semantics></mml:math></inline-formula></named-content>
Ricci curvature
manifold
harmonic vector field
title Eigenvectors of the De-Rham Operator
title_full Eigenvectors of the De-Rham Operator
title_fullStr Eigenvectors of the De-Rham Operator
title_full_unstemmed Eigenvectors of the De-Rham Operator
title_short Eigenvectors of the De-Rham Operator
title_sort eigenvectors of the de rham operator
topic de-Rham operator
eigenvector
<i>k</i>-sphere <named-content content-type="inline-formula"><inline-formula><mml:math display="block" id="mm900"><mml:semantics><mml:mrow><mml:msubsup><mml:mi>S</mml:mi><mml:mi>c</mml:mi><mml:mi>k</mml:mi></mml:msubsup></mml:mrow></mml:semantics></mml:math></inline-formula></named-content>
Ricci curvature
manifold
harmonic vector field
url https://www.mdpi.com/2227-7390/11/24/4942
work_keys_str_mv AT nasserbinturki eigenvectorsofthederhamoperator
AT shariefdeshmukh eigenvectorsofthederhamoperator
AT gabrieleduardvilcu eigenvectorsofthederhamoperator