An S-type upper bound for the largest singular value of nonnegative rectangular tensors

An S-type upper bound for the largest singular value of a nonnegative rectangular tensor is given by breaking N = {1, 2, … n} into disjoint subsets S and its complement. It is shown that the new upper bound is smaller than that provided by Yang and Yang (2011). Numerical examples are given to verify...

Full description

Bibliographic Details
Main Authors: Zhao Jianxing, Sang Caili
Format: Article
Language:English
Published: De Gruyter 2016-01-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2016-0085
_version_ 1818733615951904768
author Zhao Jianxing
Sang Caili
author_facet Zhao Jianxing
Sang Caili
author_sort Zhao Jianxing
collection DOAJ
description An S-type upper bound for the largest singular value of a nonnegative rectangular tensor is given by breaking N = {1, 2, … n} into disjoint subsets S and its complement. It is shown that the new upper bound is smaller than that provided by Yang and Yang (2011). Numerical examples are given to verify the theoretical results.
first_indexed 2024-12-17T23:52:17Z
format Article
id doaj.art-b07b8523dee3450a83a132144d6e84d1
institution Directory Open Access Journal
issn 2391-5455
language English
last_indexed 2024-12-17T23:52:17Z
publishDate 2016-01-01
publisher De Gruyter
record_format Article
series Open Mathematics
spelling doaj.art-b07b8523dee3450a83a132144d6e84d12022-12-21T21:28:10ZengDe GruyterOpen Mathematics2391-54552016-01-0114192593310.1515/math-2016-0085math-2016-0085An S-type upper bound for the largest singular value of nonnegative rectangular tensorsZhao Jianxing0Sang Caili1College of Science, Guizhou Minzu University, Guiyang 550025, ChinaCollege of Science, Guizhou Minzu University, Guiyang 550025, ChinaAn S-type upper bound for the largest singular value of a nonnegative rectangular tensor is given by breaking N = {1, 2, … n} into disjoint subsets S and its complement. It is shown that the new upper bound is smaller than that provided by Yang and Yang (2011). Numerical examples are given to verify the theoretical results.https://doi.org/10.1515/math-2016-0085nonnegative tensorrectangular tensorsingular value15a1815a4215a69
spellingShingle Zhao Jianxing
Sang Caili
An S-type upper bound for the largest singular value of nonnegative rectangular tensors
Open Mathematics
nonnegative tensor
rectangular tensor
singular value
15a18
15a42
15a69
title An S-type upper bound for the largest singular value of nonnegative rectangular tensors
title_full An S-type upper bound for the largest singular value of nonnegative rectangular tensors
title_fullStr An S-type upper bound for the largest singular value of nonnegative rectangular tensors
title_full_unstemmed An S-type upper bound for the largest singular value of nonnegative rectangular tensors
title_short An S-type upper bound for the largest singular value of nonnegative rectangular tensors
title_sort s type upper bound for the largest singular value of nonnegative rectangular tensors
topic nonnegative tensor
rectangular tensor
singular value
15a18
15a42
15a69
url https://doi.org/10.1515/math-2016-0085
work_keys_str_mv AT zhaojianxing anstypeupperboundforthelargestsingularvalueofnonnegativerectangulartensors
AT sangcaili anstypeupperboundforthelargestsingularvalueofnonnegativerectangulartensors
AT zhaojianxing stypeupperboundforthelargestsingularvalueofnonnegativerectangulartensors
AT sangcaili stypeupperboundforthelargestsingularvalueofnonnegativerectangulartensors