Plasma metabolomic profiling suggests early indications for predisposition to latent insulin resistance in children conceived by ICSI.
BACKGROUND: There have been increasing indications about an epigenetically-based elevated predisposition of assisted reproductive technology (ART) offspring to insulin resistance, which can lead to an unfavorable cardio-metabolic profile in adult life. However, the relevant long-term systematic mole...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2014-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3984097?pdf=render |
_version_ | 1811230572740083712 |
---|---|
author | Alexandra Gkourogianni Ioanna Kosteria Aristeidis G Telonis Alexandra Margeli Emilia Mantzou Maria Konsta Dimitrios Loutradis George Mastorakos Ioannis Papassotiriou Maria I Klapa Christina Kanaka-Gantenbein George P Chrousos |
author_facet | Alexandra Gkourogianni Ioanna Kosteria Aristeidis G Telonis Alexandra Margeli Emilia Mantzou Maria Konsta Dimitrios Loutradis George Mastorakos Ioannis Papassotiriou Maria I Klapa Christina Kanaka-Gantenbein George P Chrousos |
author_sort | Alexandra Gkourogianni |
collection | DOAJ |
description | BACKGROUND: There have been increasing indications about an epigenetically-based elevated predisposition of assisted reproductive technology (ART) offspring to insulin resistance, which can lead to an unfavorable cardio-metabolic profile in adult life. However, the relevant long-term systematic molecular studies are limited, especially for the IntraCytoplasmic Sperm Injection (ICSI) method, introduced in 1992. In this study, we carefully defined a group of 42 prepubertal ICSI and 42 naturally conceived (NC) children. We assessed differences in their metabolic profile based on biochemical measurements, while, for a subgroup, plasma metabolomic analysis was also performed, investigating any relevant insulin resistance indices. METHODS & RESULTS: Auxological and biochemical parameters of 42 6.8±2.1 yrs old ICSI-conceived and 42 age-matched controls were measured. Significant differences between the groups were determined using univariate and multivariate statistics, indicating low urea and low-grade inflammation markers (YKL-40, hsCRP) and high triiodothyronine (T3) in ICSI-children compared to controls. Moreover, plasma metabolomic analysis carried out for a subgroup of 10 ICSI- and 10 NC girls using Gas Chromatography-Mass Spectrometry (GC-MS) indicated clear differences between the two groups, characterized by 36 metabolites linked to obesity, insulin resistance and metabolic syndrome. Notably, the distinction between the two girl subgroups was accentuated when both their biochemical and metabolomic measurements were employed. CONCLUSIONS: The present study contributes a large auxological and biochemical dataset of a well-defined group of pre-pubertal ICSI-conceived subjects to the research of the ART effect to the offspring's health. Moreover, it is the first time that the relevant usefulness of metabolomics was investigated. The acquired results are consistent with early insulin resistance in ICSI-offspring, paving the way for further systematic investigations. These data support that metabolomics may unravel metabolic differences before they become clinically or biochemically evident, underlining its utility in the ART research. |
first_indexed | 2024-04-12T10:30:51Z |
format | Article |
id | doaj.art-b07bf8fbbc32446f892748207acaaf63 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-04-12T10:30:51Z |
publishDate | 2014-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-b07bf8fbbc32446f892748207acaaf632022-12-22T03:36:51ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-0194e9400110.1371/journal.pone.0094001Plasma metabolomic profiling suggests early indications for predisposition to latent insulin resistance in children conceived by ICSI.Alexandra GkourogianniIoanna KosteriaAristeidis G TelonisAlexandra MargeliEmilia MantzouMaria KonstaDimitrios LoutradisGeorge MastorakosIoannis PapassotiriouMaria I KlapaChristina Kanaka-GantenbeinGeorge P ChrousosBACKGROUND: There have been increasing indications about an epigenetically-based elevated predisposition of assisted reproductive technology (ART) offspring to insulin resistance, which can lead to an unfavorable cardio-metabolic profile in adult life. However, the relevant long-term systematic molecular studies are limited, especially for the IntraCytoplasmic Sperm Injection (ICSI) method, introduced in 1992. In this study, we carefully defined a group of 42 prepubertal ICSI and 42 naturally conceived (NC) children. We assessed differences in their metabolic profile based on biochemical measurements, while, for a subgroup, plasma metabolomic analysis was also performed, investigating any relevant insulin resistance indices. METHODS & RESULTS: Auxological and biochemical parameters of 42 6.8±2.1 yrs old ICSI-conceived and 42 age-matched controls were measured. Significant differences between the groups were determined using univariate and multivariate statistics, indicating low urea and low-grade inflammation markers (YKL-40, hsCRP) and high triiodothyronine (T3) in ICSI-children compared to controls. Moreover, plasma metabolomic analysis carried out for a subgroup of 10 ICSI- and 10 NC girls using Gas Chromatography-Mass Spectrometry (GC-MS) indicated clear differences between the two groups, characterized by 36 metabolites linked to obesity, insulin resistance and metabolic syndrome. Notably, the distinction between the two girl subgroups was accentuated when both their biochemical and metabolomic measurements were employed. CONCLUSIONS: The present study contributes a large auxological and biochemical dataset of a well-defined group of pre-pubertal ICSI-conceived subjects to the research of the ART effect to the offspring's health. Moreover, it is the first time that the relevant usefulness of metabolomics was investigated. The acquired results are consistent with early insulin resistance in ICSI-offspring, paving the way for further systematic investigations. These data support that metabolomics may unravel metabolic differences before they become clinically or biochemically evident, underlining its utility in the ART research.http://europepmc.org/articles/PMC3984097?pdf=render |
spellingShingle | Alexandra Gkourogianni Ioanna Kosteria Aristeidis G Telonis Alexandra Margeli Emilia Mantzou Maria Konsta Dimitrios Loutradis George Mastorakos Ioannis Papassotiriou Maria I Klapa Christina Kanaka-Gantenbein George P Chrousos Plasma metabolomic profiling suggests early indications for predisposition to latent insulin resistance in children conceived by ICSI. PLoS ONE |
title | Plasma metabolomic profiling suggests early indications for predisposition to latent insulin resistance in children conceived by ICSI. |
title_full | Plasma metabolomic profiling suggests early indications for predisposition to latent insulin resistance in children conceived by ICSI. |
title_fullStr | Plasma metabolomic profiling suggests early indications for predisposition to latent insulin resistance in children conceived by ICSI. |
title_full_unstemmed | Plasma metabolomic profiling suggests early indications for predisposition to latent insulin resistance in children conceived by ICSI. |
title_short | Plasma metabolomic profiling suggests early indications for predisposition to latent insulin resistance in children conceived by ICSI. |
title_sort | plasma metabolomic profiling suggests early indications for predisposition to latent insulin resistance in children conceived by icsi |
url | http://europepmc.org/articles/PMC3984097?pdf=render |
work_keys_str_mv | AT alexandragkourogianni plasmametabolomicprofilingsuggestsearlyindicationsforpredispositiontolatentinsulinresistanceinchildrenconceivedbyicsi AT ioannakosteria plasmametabolomicprofilingsuggestsearlyindicationsforpredispositiontolatentinsulinresistanceinchildrenconceivedbyicsi AT aristeidisgtelonis plasmametabolomicprofilingsuggestsearlyindicationsforpredispositiontolatentinsulinresistanceinchildrenconceivedbyicsi AT alexandramargeli plasmametabolomicprofilingsuggestsearlyindicationsforpredispositiontolatentinsulinresistanceinchildrenconceivedbyicsi AT emiliamantzou plasmametabolomicprofilingsuggestsearlyindicationsforpredispositiontolatentinsulinresistanceinchildrenconceivedbyicsi AT mariakonsta plasmametabolomicprofilingsuggestsearlyindicationsforpredispositiontolatentinsulinresistanceinchildrenconceivedbyicsi AT dimitriosloutradis plasmametabolomicprofilingsuggestsearlyindicationsforpredispositiontolatentinsulinresistanceinchildrenconceivedbyicsi AT georgemastorakos plasmametabolomicprofilingsuggestsearlyindicationsforpredispositiontolatentinsulinresistanceinchildrenconceivedbyicsi AT ioannispapassotiriou plasmametabolomicprofilingsuggestsearlyindicationsforpredispositiontolatentinsulinresistanceinchildrenconceivedbyicsi AT mariaiklapa plasmametabolomicprofilingsuggestsearlyindicationsforpredispositiontolatentinsulinresistanceinchildrenconceivedbyicsi AT christinakanakagantenbein plasmametabolomicprofilingsuggestsearlyindicationsforpredispositiontolatentinsulinresistanceinchildrenconceivedbyicsi AT georgepchrousos plasmametabolomicprofilingsuggestsearlyindicationsforpredispositiontolatentinsulinresistanceinchildrenconceivedbyicsi |