Weak and Strong Convergence Theorems of an Implicit Iteration Process for a Countable Family of Nonexpansive Mappings
Using the implicit iteration and the hybrid method in mathematical programming, we prove weak and strong convergence theorems for finding common fixed points of a countable family of nonexpansive mappings in a real Hilbert space. Our results include many convergence theorems by Xu and Ori (2001) and...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2009-01-01
|
Series: | Fixed Point Theory and Applications |
Online Access: | http://dx.doi.org/10.1155/2008/732193 |
Summary: | Using the implicit iteration and the hybrid method in mathematical programming, we prove weak and strong convergence theorems for finding common fixed points of a countable family of nonexpansive mappings in a real Hilbert space. Our results include many convergence theorems by Xu and Ori (2001) and Zhang and Su (2007) as special cases. We also apply our method to find a common element to the set of fixed points of a nonexpansive mapping and the set of solutions of an equilibrium problem. Finally, we propose an iteration to obtain convergence theorems for a continuous monotone mapping. |
---|---|
ISSN: | 1687-1820 1687-1812 |