Laws of Spatially Structured Population Dynamics on a Lattice
We consider spatial population dynamics on a lattice, following a type of a contact (birth–death) stochastic process. We show that simple mathematical approximations for the density of cells can be obtained in a variety of scenarios. In the case of a homogeneous cell population, we derive the cellul...
Main Authors: | Natalia L. Komarova, Ignacio A. Rodriguez-Brenes, Dominik Wodarz |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-07-01
|
Series: | Physics |
Subjects: | |
Online Access: | https://www.mdpi.com/2624-8174/4/3/52 |
Similar Items
-
Stem cell control, oscillations and tissue regeneration in spatial and non-spatial models
by: Ignacio A Rodriguez-Brenes, et al.
Published: (2013-04-01) -
Modeling tumor evolutionary dynamics
by: Beatriz eStransky, et al.
Published: (2013-02-01) -
Telomeres open a window on stem cell division
by: Ignacio A Rodriguez-Brenes, et al.
Published: (2016-01-01) -
How many samples are needed to infer truly clonal mutations from heterogenous tumours?
by: Luka Opasic, et al.
Published: (2019-04-01) -
The benefits of treating undetectable tumors
by: Natalia L Komarova
Published: (2015-08-01)