Boundedness in a quasilinear attraction–repulsion chemotaxis system with nonlinear sensitivity and logistic source

Abstract In this paper, we deal with the following quasilinear attraction–repulsion model: {ut=∇⋅(D(u)∇u)−∇⋅(S(u)χ(v)∇v)+∇⋅(F(u)ξ(w)∇w)+f(u),x∈Ω,t>0,vt=Δv+βu−αv,x∈Ω,t>0,0=Δw+γu−δw,x∈Ω,t>0,u(x,0)=u0(x),v(x,0)=v0(x),x∈Ω $$ \textstyle\begin{cases} u_{t}=\nabla \cdot (D(u)\nabla u)-\nabla \cdot...

Full description

Bibliographic Details
Main Authors: Lijun Yan, Zuodong Yang
Format: Article
Language:English
Published: SpringerOpen 2019-07-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-019-1232-y
_version_ 1817983404852903936
author Lijun Yan
Zuodong Yang
author_facet Lijun Yan
Zuodong Yang
author_sort Lijun Yan
collection DOAJ
description Abstract In this paper, we deal with the following quasilinear attraction–repulsion model: {ut=∇⋅(D(u)∇u)−∇⋅(S(u)χ(v)∇v)+∇⋅(F(u)ξ(w)∇w)+f(u),x∈Ω,t>0,vt=Δv+βu−αv,x∈Ω,t>0,0=Δw+γu−δw,x∈Ω,t>0,u(x,0)=u0(x),v(x,0)=v0(x),x∈Ω $$ \textstyle\begin{cases} u_{t}=\nabla \cdot (D(u)\nabla u)-\nabla \cdot ( S(u)\chi (v)\nabla v)+ \nabla \cdot ( F(u)\xi (w)\nabla w)+f(u), &x\in \varOmega , t>0, \\ v_{t}=\Delta v+\beta u-\alpha v, &x\in \varOmega ,t>0, \\ 0=\Delta w+\gamma u-\delta w, &x\in \varOmega , t>0, \\ u(x,0)=u_{0}(x), \quad\quad v(x,0)= v_{0}(x), &x\in \varOmega \end{cases} $$ with homogeneous Neumann boundary conditions in a smooth bounded domain Ω⊂Rn $\varOmega \subset R^{n}$ ( n≥2 $n\geq 2$). Let the chemotactic sensitivity χ(v) $\chi (v)$ be a positive constant, and let the chemotactic sensitivity ξ(w) $\xi (w)$ be a nonlinear function. Under some assumptions, we prove that the system has a unique globally bounded classical solution.
first_indexed 2024-04-13T23:32:41Z
format Article
id doaj.art-b082bdffebac4f28b6400558b207b651
institution Directory Open Access Journal
issn 1687-2770
language English
last_indexed 2024-04-13T23:32:41Z
publishDate 2019-07-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj.art-b082bdffebac4f28b6400558b207b6512022-12-22T02:24:51ZengSpringerOpenBoundary Value Problems1687-27702019-07-012019111310.1186/s13661-019-1232-yBoundedness in a quasilinear attraction–repulsion chemotaxis system with nonlinear sensitivity and logistic sourceLijun Yan0Zuodong Yang1School of Science, North China Institute of Science and TechnologySchool of Teacher Education, Nanjing Normal UniversityAbstract In this paper, we deal with the following quasilinear attraction–repulsion model: {ut=∇⋅(D(u)∇u)−∇⋅(S(u)χ(v)∇v)+∇⋅(F(u)ξ(w)∇w)+f(u),x∈Ω,t>0,vt=Δv+βu−αv,x∈Ω,t>0,0=Δw+γu−δw,x∈Ω,t>0,u(x,0)=u0(x),v(x,0)=v0(x),x∈Ω $$ \textstyle\begin{cases} u_{t}=\nabla \cdot (D(u)\nabla u)-\nabla \cdot ( S(u)\chi (v)\nabla v)+ \nabla \cdot ( F(u)\xi (w)\nabla w)+f(u), &x\in \varOmega , t>0, \\ v_{t}=\Delta v+\beta u-\alpha v, &x\in \varOmega ,t>0, \\ 0=\Delta w+\gamma u-\delta w, &x\in \varOmega , t>0, \\ u(x,0)=u_{0}(x), \quad\quad v(x,0)= v_{0}(x), &x\in \varOmega \end{cases} $$ with homogeneous Neumann boundary conditions in a smooth bounded domain Ω⊂Rn $\varOmega \subset R^{n}$ ( n≥2 $n\geq 2$). Let the chemotactic sensitivity χ(v) $\chi (v)$ be a positive constant, and let the chemotactic sensitivity ξ(w) $\xi (w)$ be a nonlinear function. Under some assumptions, we prove that the system has a unique globally bounded classical solution.http://link.springer.com/article/10.1186/s13661-019-1232-yAttraction–repulsionBoundednessNonlinear sensitivityLogistic source
spellingShingle Lijun Yan
Zuodong Yang
Boundedness in a quasilinear attraction–repulsion chemotaxis system with nonlinear sensitivity and logistic source
Boundary Value Problems
Attraction–repulsion
Boundedness
Nonlinear sensitivity
Logistic source
title Boundedness in a quasilinear attraction–repulsion chemotaxis system with nonlinear sensitivity and logistic source
title_full Boundedness in a quasilinear attraction–repulsion chemotaxis system with nonlinear sensitivity and logistic source
title_fullStr Boundedness in a quasilinear attraction–repulsion chemotaxis system with nonlinear sensitivity and logistic source
title_full_unstemmed Boundedness in a quasilinear attraction–repulsion chemotaxis system with nonlinear sensitivity and logistic source
title_short Boundedness in a quasilinear attraction–repulsion chemotaxis system with nonlinear sensitivity and logistic source
title_sort boundedness in a quasilinear attraction repulsion chemotaxis system with nonlinear sensitivity and logistic source
topic Attraction–repulsion
Boundedness
Nonlinear sensitivity
Logistic source
url http://link.springer.com/article/10.1186/s13661-019-1232-y
work_keys_str_mv AT lijunyan boundednessinaquasilinearattractionrepulsionchemotaxissystemwithnonlinearsensitivityandlogisticsource
AT zuodongyang boundednessinaquasilinearattractionrepulsionchemotaxissystemwithnonlinearsensitivityandlogisticsource