Data of the freezing curves of tuna blocks with or without the weak oscillating magnetic fields

Although freezing is the most popular method for long-term food preservation, the formation of ice crystals during the process often leads to degradation of the product quality. Recently, we demonstrated that the presence of oscillating magnetic fields (OMFs) can hinder ice crystallization (10.1016/...

Full description

Bibliographic Details
Main Authors: Kana Okuda, Aiko Kawauchi, Kentaro Yomogida
Format: Article
Language:English
Published: Elsevier 2020-08-01
Series:Data in Brief
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352340920307460
Description
Summary:Although freezing is the most popular method for long-term food preservation, the formation of ice crystals during the process often leads to degradation of the product quality. Recently, we demonstrated that the presence of oscillating magnetic fields (OMFs) can hinder ice crystallization (10.1016/j.cryobiol.2020.05.005, [1]). In this data that we investigated the effects of OMFs on freezing tuna blocks using the Cell Alive SystemⓇ (CASⓇ) (ABI Co. Ltd., Chiba, Japan) developed as a rapid freezer unit supplemented with an OMF generator. The center temperature of tuna blocks was monitored during air blast freezing (ABF) or ABF combined with CASⓇ (ABF-CAS). The time taken to acquire the freezing temperature (-20 °C) was significantly (p < 0.05) shortened with ABF-CAS compared to ABF. The time taken for ice crystal formation (crystallization time) was slightly shorter in case of the ABF-CAS system relative to ABF (p = 0.08497).
ISSN:2352-3409