NMR-Based Analysis of Plasma Lipoprotein Subclass and Lipid Composition Demonstrate the Different Dietary Effects in ApoE-Deficient Mice

Plasma lipid levels are commonly measured using traditional methods such as triglycerides (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and cholesterol (CH). However, the use of newer technologies, such as nuclear magnetic resonance (NMR) with post-analysis platforms, has made...

Full description

Bibliographic Details
Main Authors: Cheng-Hung Yang, Yu-Hsuan Ho, Hsiang-Yu Tang, Chi-Jen Lo
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/29/5/988
Description
Summary:Plasma lipid levels are commonly measured using traditional methods such as triglycerides (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and cholesterol (CH). However, the use of newer technologies, such as nuclear magnetic resonance (NMR) with post-analysis platforms, has made it easier to assess lipoprotein profiles in research. In this study involving ApoE-deficient mice that were fed high-fat diets, significant changes were observed in TG, CH, free cholesterol (FC), and phospholipid (PL) levels within the LDL fraction. The varied proportions of TG in wild-type mice and CH, FC, and PL in ApoE<sup>-/-</sup> mice were strikingly different in very low-density lipoproteins (VLDL), LDL, intermediate-density lipoprotein (IDL), and HDL. This comprehensive analysis expands our understanding of lipoprotein subfractions and the impacts of the APOE protein and high-fat diet in mouse models. The new testing method allows for a complete assessment of plasma lipids and their correlation with genetic background and diet in mice.
ISSN:1420-3049