Effect of EGR and Fuel Injection Strategies on the Heavy-Duty Diesel Engine Emission Performance under Transient Operation

To reduce the smoke and nitrogen oxide (NOx) emissions; a detailed study concerned with exhaust gas recirculation (EGR) and diesel injection strategy was conducted on a two-stage series turbocharging diesel engine under transient operating condition. One transient process based on the constant speed...

Full description

Bibliographic Details
Main Authors: Fangyuan Zhang, Zhongshu Wang, Jing Tian, Linlin Li, Kaibo Yu, Kunyi He
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/3/566
Description
Summary:To reduce the smoke and nitrogen oxide (NOx) emissions; a detailed study concerned with exhaust gas recirculation (EGR) and diesel injection strategy was conducted on a two-stage series turbocharging diesel engine under transient operating condition. One transient process based on the constant speed of 1650 r/min and load increases linearly from 10% to 100% within 5 s was tested in this study. The effect of the EGR valve control strategy on engine transient performance was examined. The results show that better air-fuel mixing quality can be obtained with the optimized the EGR valve open loop control strategy and the smoke opacity peak decreased more than 64%. Under the EGR valve close loop control strategy; the smoke opacity peak was lower than with open loop control strategy; but higher than without EGR. The effect of fuel injection strategy on engine transient performance was examined with the EGR valve close loop control. The results show that sectional-stage rail pressure (SSRP) strategy (increasing injection pressure from a turning point load to 100% load) and optimizing fuel injection timing can improve the engine emission performance. The satisfactory results can be obtained with lower NOx (382 ppm) emissions and the smoke opacity peak (3.8%), when the turning point load is set to 60% with the injection timing delay 6° CA.
ISSN:1996-1073