Bi-Univalent Problems Involving Generalized Multiplier Transform with Respect to Symmetric and Conjugate Points
In the present article, using the subordination principle, the authors employed certain generalized multiplier transform to define two new subclasses of analytic functions with respect to symmetric and conjugate points. In particular, bi-univalent conditions for function <inline-formula><ma...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-08-01
|
Series: | Fractal and Fractional |
Subjects: | |
Online Access: | https://www.mdpi.com/2504-3110/6/9/483 |
Summary: | In the present article, using the subordination principle, the authors employed certain generalized multiplier transform to define two new subclasses of analytic functions with respect to symmetric and conjugate points. In particular, bi-univalent conditions for function <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></semantics></math></inline-formula> belonging to these new subclasses and their relevant connections to the famous Fekete-Szegö inequality <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>a</mi><mn>3</mn></msub><mo>−</mo><mi>v</mi><msubsup><mi>a</mi><mn>2</mn><mn>2</mn></msubsup><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula> were investigated using a succinct mathematical approach. |
---|---|
ISSN: | 2504-3110 |