Bi-Univalent Problems Involving Generalized Multiplier Transform with Respect to Symmetric and Conjugate Points

In the present article, using the subordination principle, the authors employed certain generalized multiplier transform to define two new subclasses of analytic functions with respect to symmetric and conjugate points. In particular, bi-univalent conditions for function <inline-formula><ma...

Full description

Bibliographic Details
Main Authors: Jamiu Olusegun Hamzat, Matthew Olanrewaju Oluwayemi, Alina Alb Lupaş, Abbas Kareem Wanas
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/6/9/483
Description
Summary:In the present article, using the subordination principle, the authors employed certain generalized multiplier transform to define two new subclasses of analytic functions with respect to symmetric and conjugate points. In particular, bi-univalent conditions for function <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></semantics></math></inline-formula> belonging to these new subclasses and their relevant connections to the famous Fekete-Szegö inequality <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>a</mi><mn>3</mn></msub><mo>−</mo><mi>v</mi><msubsup><mi>a</mi><mn>2</mn><mn>2</mn></msubsup><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula> were investigated using a succinct mathematical approach.
ISSN:2504-3110