Bi-Univalent Problems Involving Generalized Multiplier Transform with Respect to Symmetric and Conjugate Points
In the present article, using the subordination principle, the authors employed certain generalized multiplier transform to define two new subclasses of analytic functions with respect to symmetric and conjugate points. In particular, bi-univalent conditions for function <inline-formula><ma...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-08-01
|
Series: | Fractal and Fractional |
Subjects: | |
Online Access: | https://www.mdpi.com/2504-3110/6/9/483 |
_version_ | 1797488264329822208 |
---|---|
author | Jamiu Olusegun Hamzat Matthew Olanrewaju Oluwayemi Alina Alb Lupaş Abbas Kareem Wanas |
author_facet | Jamiu Olusegun Hamzat Matthew Olanrewaju Oluwayemi Alina Alb Lupaş Abbas Kareem Wanas |
author_sort | Jamiu Olusegun Hamzat |
collection | DOAJ |
description | In the present article, using the subordination principle, the authors employed certain generalized multiplier transform to define two new subclasses of analytic functions with respect to symmetric and conjugate points. In particular, bi-univalent conditions for function <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></semantics></math></inline-formula> belonging to these new subclasses and their relevant connections to the famous Fekete-Szegö inequality <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>a</mi><mn>3</mn></msub><mo>−</mo><mi>v</mi><msubsup><mi>a</mi><mn>2</mn><mn>2</mn></msubsup><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula> were investigated using a succinct mathematical approach. |
first_indexed | 2024-03-09T23:59:35Z |
format | Article |
id | doaj.art-b0a682a166c44abd9bf79c7f5dbaf7b0 |
institution | Directory Open Access Journal |
issn | 2504-3110 |
language | English |
last_indexed | 2024-03-09T23:59:35Z |
publishDate | 2022-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Fractal and Fractional |
spelling | doaj.art-b0a682a166c44abd9bf79c7f5dbaf7b02023-11-23T16:19:22ZengMDPI AGFractal and Fractional2504-31102022-08-016948310.3390/fractalfract6090483Bi-Univalent Problems Involving Generalized Multiplier Transform with Respect to Symmetric and Conjugate PointsJamiu Olusegun Hamzat0Matthew Olanrewaju Oluwayemi1Alina Alb Lupaş2Abbas Kareem Wanas3Department of Mathematics, University of Lagos, Akoka, Lagos 101017, NigeriaSDG 4 (Quality Education Research Group), Landmark University, Omu-Aran 251103, NigeriaDepartment of Mathematics and Computer Science, University of Oradea, 1 Universitatii Street, 410087 Oradea, RomaniaDepartment of Mathematics, College of Science, University of Al-Qadisiyah, Al Diwaniyah 58001, Al-Qadisiyah, IraqIn the present article, using the subordination principle, the authors employed certain generalized multiplier transform to define two new subclasses of analytic functions with respect to symmetric and conjugate points. In particular, bi-univalent conditions for function <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></semantics></math></inline-formula> belonging to these new subclasses and their relevant connections to the famous Fekete-Szegö inequality <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>a</mi><mn>3</mn></msub><mo>−</mo><mi>v</mi><msubsup><mi>a</mi><mn>2</mn><mn>2</mn></msubsup><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula> were investigated using a succinct mathematical approach.https://www.mdpi.com/2504-3110/6/9/483analyticunivalentdifferential operatorbi-univalentFekete-Szego |
spellingShingle | Jamiu Olusegun Hamzat Matthew Olanrewaju Oluwayemi Alina Alb Lupaş Abbas Kareem Wanas Bi-Univalent Problems Involving Generalized Multiplier Transform with Respect to Symmetric and Conjugate Points Fractal and Fractional analytic univalent differential operator bi-univalent Fekete-Szego |
title | Bi-Univalent Problems Involving Generalized Multiplier Transform with Respect to Symmetric and Conjugate Points |
title_full | Bi-Univalent Problems Involving Generalized Multiplier Transform with Respect to Symmetric and Conjugate Points |
title_fullStr | Bi-Univalent Problems Involving Generalized Multiplier Transform with Respect to Symmetric and Conjugate Points |
title_full_unstemmed | Bi-Univalent Problems Involving Generalized Multiplier Transform with Respect to Symmetric and Conjugate Points |
title_short | Bi-Univalent Problems Involving Generalized Multiplier Transform with Respect to Symmetric and Conjugate Points |
title_sort | bi univalent problems involving generalized multiplier transform with respect to symmetric and conjugate points |
topic | analytic univalent differential operator bi-univalent Fekete-Szego |
url | https://www.mdpi.com/2504-3110/6/9/483 |
work_keys_str_mv | AT jamiuolusegunhamzat biunivalentproblemsinvolvinggeneralizedmultipliertransformwithrespecttosymmetricandconjugatepoints AT matthewolanrewajuoluwayemi biunivalentproblemsinvolvinggeneralizedmultipliertransformwithrespecttosymmetricandconjugatepoints AT alinaalblupas biunivalentproblemsinvolvinggeneralizedmultipliertransformwithrespecttosymmetricandconjugatepoints AT abbaskareemwanas biunivalentproblemsinvolvinggeneralizedmultipliertransformwithrespecttosymmetricandconjugatepoints |