Bi-Univalent Problems Involving Generalized Multiplier Transform with Respect to Symmetric and Conjugate Points

In the present article, using the subordination principle, the authors employed certain generalized multiplier transform to define two new subclasses of analytic functions with respect to symmetric and conjugate points. In particular, bi-univalent conditions for function <inline-formula><ma...

Full description

Bibliographic Details
Main Authors: Jamiu Olusegun Hamzat, Matthew Olanrewaju Oluwayemi, Alina Alb Lupaş, Abbas Kareem Wanas
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/6/9/483
_version_ 1797488264329822208
author Jamiu Olusegun Hamzat
Matthew Olanrewaju Oluwayemi
Alina Alb Lupaş
Abbas Kareem Wanas
author_facet Jamiu Olusegun Hamzat
Matthew Olanrewaju Oluwayemi
Alina Alb Lupaş
Abbas Kareem Wanas
author_sort Jamiu Olusegun Hamzat
collection DOAJ
description In the present article, using the subordination principle, the authors employed certain generalized multiplier transform to define two new subclasses of analytic functions with respect to symmetric and conjugate points. In particular, bi-univalent conditions for function <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></semantics></math></inline-formula> belonging to these new subclasses and their relevant connections to the famous Fekete-Szegö inequality <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>a</mi><mn>3</mn></msub><mo>−</mo><mi>v</mi><msubsup><mi>a</mi><mn>2</mn><mn>2</mn></msubsup><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula> were investigated using a succinct mathematical approach.
first_indexed 2024-03-09T23:59:35Z
format Article
id doaj.art-b0a682a166c44abd9bf79c7f5dbaf7b0
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-09T23:59:35Z
publishDate 2022-08-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-b0a682a166c44abd9bf79c7f5dbaf7b02023-11-23T16:19:22ZengMDPI AGFractal and Fractional2504-31102022-08-016948310.3390/fractalfract6090483Bi-Univalent Problems Involving Generalized Multiplier Transform with Respect to Symmetric and Conjugate PointsJamiu Olusegun Hamzat0Matthew Olanrewaju Oluwayemi1Alina Alb Lupaş2Abbas Kareem Wanas3Department of Mathematics, University of Lagos, Akoka, Lagos 101017, NigeriaSDG 4 (Quality Education Research Group), Landmark University, Omu-Aran 251103, NigeriaDepartment of Mathematics and Computer Science, University of Oradea, 1 Universitatii Street, 410087 Oradea, RomaniaDepartment of Mathematics, College of Science, University of Al-Qadisiyah, Al Diwaniyah 58001, Al-Qadisiyah, IraqIn the present article, using the subordination principle, the authors employed certain generalized multiplier transform to define two new subclasses of analytic functions with respect to symmetric and conjugate points. In particular, bi-univalent conditions for function <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></semantics></math></inline-formula> belonging to these new subclasses and their relevant connections to the famous Fekete-Szegö inequality <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>a</mi><mn>3</mn></msub><mo>−</mo><mi>v</mi><msubsup><mi>a</mi><mn>2</mn><mn>2</mn></msubsup><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula> were investigated using a succinct mathematical approach.https://www.mdpi.com/2504-3110/6/9/483analyticunivalentdifferential operatorbi-univalentFekete-Szego
spellingShingle Jamiu Olusegun Hamzat
Matthew Olanrewaju Oluwayemi
Alina Alb Lupaş
Abbas Kareem Wanas
Bi-Univalent Problems Involving Generalized Multiplier Transform with Respect to Symmetric and Conjugate Points
Fractal and Fractional
analytic
univalent
differential operator
bi-univalent
Fekete-Szego
title Bi-Univalent Problems Involving Generalized Multiplier Transform with Respect to Symmetric and Conjugate Points
title_full Bi-Univalent Problems Involving Generalized Multiplier Transform with Respect to Symmetric and Conjugate Points
title_fullStr Bi-Univalent Problems Involving Generalized Multiplier Transform with Respect to Symmetric and Conjugate Points
title_full_unstemmed Bi-Univalent Problems Involving Generalized Multiplier Transform with Respect to Symmetric and Conjugate Points
title_short Bi-Univalent Problems Involving Generalized Multiplier Transform with Respect to Symmetric and Conjugate Points
title_sort bi univalent problems involving generalized multiplier transform with respect to symmetric and conjugate points
topic analytic
univalent
differential operator
bi-univalent
Fekete-Szego
url https://www.mdpi.com/2504-3110/6/9/483
work_keys_str_mv AT jamiuolusegunhamzat biunivalentproblemsinvolvinggeneralizedmultipliertransformwithrespecttosymmetricandconjugatepoints
AT matthewolanrewajuoluwayemi biunivalentproblemsinvolvinggeneralizedmultipliertransformwithrespecttosymmetricandconjugatepoints
AT alinaalblupas biunivalentproblemsinvolvinggeneralizedmultipliertransformwithrespecttosymmetricandconjugatepoints
AT abbaskareemwanas biunivalentproblemsinvolvinggeneralizedmultipliertransformwithrespecttosymmetricandconjugatepoints