Characterization of solutions to equations involving the p(x)-Laplace operator

In this article we study two problems, a nonlinear eigenvalue problem involving the p(x)-Laplacian and a subcritical boundary value problem for the same operator. We work on the variable exponent Sobolev spaces and use one of the variants of the Mountain-Pass Lemma.

Bibliographic Details
Main Authors: Iulia Dorotheea Stircu, Vasile Florin Uta
Format: Article
Language:English
Published: Texas State University 2017-11-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2017/273/abstr.html
_version_ 1818192917625307136
author Iulia Dorotheea Stircu
Vasile Florin Uta
author_facet Iulia Dorotheea Stircu
Vasile Florin Uta
author_sort Iulia Dorotheea Stircu
collection DOAJ
description In this article we study two problems, a nonlinear eigenvalue problem involving the p(x)-Laplacian and a subcritical boundary value problem for the same operator. We work on the variable exponent Sobolev spaces and use one of the variants of the Mountain-Pass Lemma.
first_indexed 2024-12-12T00:38:07Z
format Article
id doaj.art-b0aa8de73084468e8e7751fe2fdab405
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-12T00:38:07Z
publishDate 2017-11-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-b0aa8de73084468e8e7751fe2fdab4052022-12-22T00:44:19ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912017-11-012017273,116Characterization of solutions to equations involving the p(x)-Laplace operatorIulia Dorotheea Stircu0Vasile Florin Uta1 Univ. of Craiova, Romania Univ. of Craiova, Romania In this article we study two problems, a nonlinear eigenvalue problem involving the p(x)-Laplacian and a subcritical boundary value problem for the same operator. We work on the variable exponent Sobolev spaces and use one of the variants of the Mountain-Pass Lemma.http://ejde.math.txstate.edu/Volumes/2017/273/abstr.htmlNonlinear eigenvalue problemp(x)-Laplaciancritical pointvariable exponent Sobolev spaces mountain-pass theorem
spellingShingle Iulia Dorotheea Stircu
Vasile Florin Uta
Characterization of solutions to equations involving the p(x)-Laplace operator
Electronic Journal of Differential Equations
Nonlinear eigenvalue problem
p(x)-Laplacian
critical point
variable exponent Sobolev spaces
mountain-pass theorem
title Characterization of solutions to equations involving the p(x)-Laplace operator
title_full Characterization of solutions to equations involving the p(x)-Laplace operator
title_fullStr Characterization of solutions to equations involving the p(x)-Laplace operator
title_full_unstemmed Characterization of solutions to equations involving the p(x)-Laplace operator
title_short Characterization of solutions to equations involving the p(x)-Laplace operator
title_sort characterization of solutions to equations involving the p x laplace operator
topic Nonlinear eigenvalue problem
p(x)-Laplacian
critical point
variable exponent Sobolev spaces
mountain-pass theorem
url http://ejde.math.txstate.edu/Volumes/2017/273/abstr.html
work_keys_str_mv AT iuliadorotheeastircu characterizationofsolutionstoequationsinvolvingthepxlaplaceoperator
AT vasileflorinuta characterizationofsolutionstoequationsinvolvingthepxlaplaceoperator