Exploring the Limits of Biological Complexity Amenable to Studies by Incoherent Neutron Spectroscopy

The wavelengths of neutrons available at neutron scattering facilities are comparable with intra- and inter-molecular distances, while their energies are comparable with molecular vibrational energies, making such neutrons highly suitable for studies of molecular-level dynamics. The unmistakable tre...

Full description

Bibliographic Details
Main Author: Eugene Mamontov
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Life
Subjects:
Online Access:https://www.mdpi.com/2075-1729/12/8/1219
Description
Summary:The wavelengths of neutrons available at neutron scattering facilities are comparable with intra- and inter-molecular distances, while their energies are comparable with molecular vibrational energies, making such neutrons highly suitable for studies of molecular-level dynamics. The unmistakable trend in neutron spectroscopy has been towards measurements of systems of greater complexity. Several decades of studies of dynamics using neutron scattering have witnessed a progression from measurements of solids to liquids to protein complexes and biomembranes, which may exhibit properties characteristic of both solids and liquids. Over the last two decades, the frontier of complexity amenable to neutron spectroscopy studies has reached the level of cells. Considering this a baseline for neutron spectroscopy of systems of the utmost biological complexity, we briefly review what has been learned to date from neutron scattering studies at the cellular level and then discuss in more detail the recent strides into neutron spectroscopy of tissues and whole multicellular organisms.
ISSN:2075-1729