Classification of Dermoscopy Skin Lesion Color-Images Using Fractal-Deep Learning Features

The detection of skin diseases is becoming one of the priority tasks worldwide due to the increasing amount of skin cancer. Computer-aided diagnosis is a helpful tool to help dermatologists in the detection of these kinds of illnesses. This work proposes a computer-aided diagnosis based on 1D fracta...

Full description

Bibliographic Details
Main Authors: Edgar Omar Molina-Molina, Selene Solorza-Calderón, Josué Álvarez-Borrego
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/17/5954
Description
Summary:The detection of skin diseases is becoming one of the priority tasks worldwide due to the increasing amount of skin cancer. Computer-aided diagnosis is a helpful tool to help dermatologists in the detection of these kinds of illnesses. This work proposes a computer-aided diagnosis based on 1D fractal signatures of texture-based features combining with deep-learning features using transferred learning based in Densenet-201. This proposal works with three 1D fractal signatures built per color-image. The energy, variance, and entropy of the fractal signatures are used combined with 100 features extracted from Densenet-201 to construct the features vector. Because commonly, the classes in the dataset of skin lesion images are imbalanced, we use the technique of ensemble of classifiers: K-nearest neighbors and two types of support vector machines. The computer-aided diagnosis output was determined based on the linear plurality vote. In this work, we obtained an average accuracy of 97.35%, an average precision of 91.61%, an average sensitivity of 66.45%, and an average specificity of 97.85% in the eight classes’ classification in the International Skin Imaging Collaboration (ISIC) archive-2019.
ISSN:2076-3417