Impacts of Tariffs on Energy Conscious Behavior with Respect to Household Attributes in Saudi Arabia
Historically, the combination of generous subsidies along with extreme climate has led to unsustainable domestic electricity consumption in Saudi Arabia. The residential sector constitutes a significant portion of this consumption. Amid the economic challenges, the country enforced a new electricity...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-02-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/16/3/1458 |
_version_ | 1797624699841150976 |
---|---|
author | Kh Md Nahiduzzaman Abdullatif Said Abdallah Arash Moradzadeh Amin Mohammadpour Shotorbani Kasun Hewage Rehan Sadiq |
author_facet | Kh Md Nahiduzzaman Abdullatif Said Abdallah Arash Moradzadeh Amin Mohammadpour Shotorbani Kasun Hewage Rehan Sadiq |
author_sort | Kh Md Nahiduzzaman |
collection | DOAJ |
description | Historically, the combination of generous subsidies along with extreme climate has led to unsustainable domestic electricity consumption in Saudi Arabia. The residential sector constitutes a significant portion of this consumption. Amid the economic challenges, the country enforced a new electricity tariff for residential consumers in 2018. This study thus leverages change in 2018–2020 by collecting and analyzing the electricity consumption data of 73 households in the Eastern Province of Saudi Arabia. The energy consumption is modeled based on the households’ attributes (e.g., dwelling type, ownership, number of residents, rooms, ventilation type, etc.) and applied tariffs using a machine learning technique. The extreme learning machine (ELM) is employed in solving the overfitting problem due to low-volume data. The correlation matrix is also constructed to determine the relationship between the household attributes. The ELM model developed in this study extracts the correlation between the input variables in determining energy consumption and also predicts the energy consumption related to low consumption data. The findings indicated that the electricity consumption between the pre-revised tariff year and the revised tariff enforcement year saw a reduction which was consistent in the subsequent years. This was also validated by the paired sample <i>t</i>-test, which showed a significant decrease in electricity consumption for the study period. The analysis also revealed that several household attributes had a relatively high impact on the reduction in the electricity consumption level following the revised tariffs, whereas the majority of the attributes had a moderate impact. In addition to these key findings, the demonstrated pathway adopted in this study is itself a methodological contribution that provides critical information about the sensitivity of the impacts of tariffs on energy consumption with respect to different household attributes. Economic factors being the critical stress need to be blended with existing energy consciousness for positive changes in favor of energy-saving behavior of the household members. The study does not attempt to represent the population of concern, but demonstrates a methodology that would help unleash inherent energy consciousness in favor of sustainable and energy-efficient behavior. |
first_indexed | 2024-03-11T09:46:17Z |
format | Article |
id | doaj.art-b0c8b5266d6a4969ad16f87c9ef3233a |
institution | Directory Open Access Journal |
issn | 1996-1073 |
language | English |
last_indexed | 2024-03-11T09:46:17Z |
publishDate | 2023-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Energies |
spelling | doaj.art-b0c8b5266d6a4969ad16f87c9ef3233a2023-11-16T16:37:45ZengMDPI AGEnergies1996-10732023-02-01163145810.3390/en16031458Impacts of Tariffs on Energy Conscious Behavior with Respect to Household Attributes in Saudi ArabiaKh Md Nahiduzzaman0Abdullatif Said Abdallah1Arash Moradzadeh2Amin Mohammadpour Shotorbani3Kasun Hewage4Rehan Sadiq5Life Cycle Management Laboratory, School of Engineering, University of British Columbia, 1137 Alumni Avenue, Kelowna, BC V1V 1V7, CanadaFaculty of Architecture, Building and Planning, University of Melbourne, Melbourne, VIC 3053, AustraliaFaculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 5166616471, IranLife Cycle Management Laboratory, School of Engineering, University of British Columbia, 1137 Alumni Avenue, Kelowna, BC V1V 1V7, CanadaLife Cycle Management Laboratory, School of Engineering, University of British Columbia, 1137 Alumni Avenue, Kelowna, BC V1V 1V7, CanadaLife Cycle Management Laboratory, School of Engineering, University of British Columbia, 1137 Alumni Avenue, Kelowna, BC V1V 1V7, CanadaHistorically, the combination of generous subsidies along with extreme climate has led to unsustainable domestic electricity consumption in Saudi Arabia. The residential sector constitutes a significant portion of this consumption. Amid the economic challenges, the country enforced a new electricity tariff for residential consumers in 2018. This study thus leverages change in 2018–2020 by collecting and analyzing the electricity consumption data of 73 households in the Eastern Province of Saudi Arabia. The energy consumption is modeled based on the households’ attributes (e.g., dwelling type, ownership, number of residents, rooms, ventilation type, etc.) and applied tariffs using a machine learning technique. The extreme learning machine (ELM) is employed in solving the overfitting problem due to low-volume data. The correlation matrix is also constructed to determine the relationship between the household attributes. The ELM model developed in this study extracts the correlation between the input variables in determining energy consumption and also predicts the energy consumption related to low consumption data. The findings indicated that the electricity consumption between the pre-revised tariff year and the revised tariff enforcement year saw a reduction which was consistent in the subsequent years. This was also validated by the paired sample <i>t</i>-test, which showed a significant decrease in electricity consumption for the study period. The analysis also revealed that several household attributes had a relatively high impact on the reduction in the electricity consumption level following the revised tariffs, whereas the majority of the attributes had a moderate impact. In addition to these key findings, the demonstrated pathway adopted in this study is itself a methodological contribution that provides critical information about the sensitivity of the impacts of tariffs on energy consumption with respect to different household attributes. Economic factors being the critical stress need to be blended with existing energy consciousness for positive changes in favor of energy-saving behavior of the household members. The study does not attempt to represent the population of concern, but demonstrates a methodology that would help unleash inherent energy consciousness in favor of sustainable and energy-efficient behavior.https://www.mdpi.com/1996-1073/16/3/1458energy consumptionenergy conscious behaviorextreme learning machineelectricity tariff |
spellingShingle | Kh Md Nahiduzzaman Abdullatif Said Abdallah Arash Moradzadeh Amin Mohammadpour Shotorbani Kasun Hewage Rehan Sadiq Impacts of Tariffs on Energy Conscious Behavior with Respect to Household Attributes in Saudi Arabia Energies energy consumption energy conscious behavior extreme learning machine electricity tariff |
title | Impacts of Tariffs on Energy Conscious Behavior with Respect to Household Attributes in Saudi Arabia |
title_full | Impacts of Tariffs on Energy Conscious Behavior with Respect to Household Attributes in Saudi Arabia |
title_fullStr | Impacts of Tariffs on Energy Conscious Behavior with Respect to Household Attributes in Saudi Arabia |
title_full_unstemmed | Impacts of Tariffs on Energy Conscious Behavior with Respect to Household Attributes in Saudi Arabia |
title_short | Impacts of Tariffs on Energy Conscious Behavior with Respect to Household Attributes in Saudi Arabia |
title_sort | impacts of tariffs on energy conscious behavior with respect to household attributes in saudi arabia |
topic | energy consumption energy conscious behavior extreme learning machine electricity tariff |
url | https://www.mdpi.com/1996-1073/16/3/1458 |
work_keys_str_mv | AT khmdnahiduzzaman impactsoftariffsonenergyconsciousbehaviorwithrespecttohouseholdattributesinsaudiarabia AT abdullatifsaidabdallah impactsoftariffsonenergyconsciousbehaviorwithrespecttohouseholdattributesinsaudiarabia AT arashmoradzadeh impactsoftariffsonenergyconsciousbehaviorwithrespecttohouseholdattributesinsaudiarabia AT aminmohammadpourshotorbani impactsoftariffsonenergyconsciousbehaviorwithrespecttohouseholdattributesinsaudiarabia AT kasunhewage impactsoftariffsonenergyconsciousbehaviorwithrespecttohouseholdattributesinsaudiarabia AT rehansadiq impactsoftariffsonenergyconsciousbehaviorwithrespecttohouseholdattributesinsaudiarabia |