On the system of rational difference equations <it>x</it><sub><it>n</it>+1</sub> = <it>f</it>(<it>y</it><sub><it>n</it>-<it>q</it></sub>, <it>x</it><sub><it>n</it>-<it>s</it></sub>), <it>y</it><sub><it>n</it>+1</sub> = <it>g</it>(<it>x</it><sub><it>n</it>-<it>t</it></sub>, <it>y</it><sub><it>n</it>-<it>p</it></sub>)

<p/> <p>We study the global behavior of positive solutions of the system of rational difference equations <it>x</it><sub><it>n</it>+1</sub> = <it>f</it>(<it>y</it><sub><it>n</it>-<it>q</it></sub&...

Full description

Bibliographic Details
Main Authors: Xi Hongjian, Sun Taixiang
Format: Article
Language:English
Published: SpringerOpen 2006-01-01
Series:Advances in Difference Equations
Online Access:http://www.advancesindifferenceequations.com/content/2006/051520
_version_ 1828258008721784832
author Xi Hongjian
Sun Taixiang
author_facet Xi Hongjian
Sun Taixiang
author_sort Xi Hongjian
collection DOAJ
description <p/> <p>We study the global behavior of positive solutions of the system of rational difference equations <it>x</it><sub><it>n</it>+1</sub> = <it>f</it>(<it>y</it><sub><it>n</it>-<it>q</it></sub>, <it>x</it><sub><it>n</it>-<it>s</it></sub>), <it>y</it><sub><it>n</it>+1</sub> = <it>g</it>(<it>x</it><sub><it>n</it>-<it>t</it></sub>, <it>y</it><sub><it>n</it>-<it>p</it></sub>), <it>n</it> = 0,1,2,..., where <it>p</it>, <it>q</it>, <it>s</it>, <it>t</it> &#8712; {0,1,2,...} with <it>s</it> &#8805; <it>t</it> and <it>p</it> &#8805; <it>q</it>, the initial values <it>x</it><sub>-<it>s</it></sub>, <it>x</it><sub>-<it>s</it>+1</sub>,...,<it>x</it><sub>0</sub>, <it>y</it><sub>-<it>p</it></sub>, <it>y</it><sub>-<it>p</it>+1</sub>,...<it>y</it><sub>0</sub> &#8712; (0,+&#8734;). We give sufficient conditions under which every positive solution of this system converges to the unique positive equilibrium.</p>
first_indexed 2024-04-13T02:48:49Z
format Article
id doaj.art-b0e339733e1948819dafe0764e5c6e26
institution Directory Open Access Journal
issn 1687-1839
1687-1847
language English
last_indexed 2024-04-13T02:48:49Z
publishDate 2006-01-01
publisher SpringerOpen
record_format Article
series Advances in Difference Equations
spelling doaj.art-b0e339733e1948819dafe0764e5c6e262022-12-22T03:05:54ZengSpringerOpenAdvances in Difference Equations1687-18391687-18472006-01-0120061051520On the system of rational difference equations <it>x</it><sub><it>n</it>+1</sub> = <it>f</it>(<it>y</it><sub><it>n</it>-<it>q</it></sub>, <it>x</it><sub><it>n</it>-<it>s</it></sub>), <it>y</it><sub><it>n</it>+1</sub> = <it>g</it>(<it>x</it><sub><it>n</it>-<it>t</it></sub>, <it>y</it><sub><it>n</it>-<it>p</it></sub>)Xi HongjianSun Taixiang<p/> <p>We study the global behavior of positive solutions of the system of rational difference equations <it>x</it><sub><it>n</it>+1</sub> = <it>f</it>(<it>y</it><sub><it>n</it>-<it>q</it></sub>, <it>x</it><sub><it>n</it>-<it>s</it></sub>), <it>y</it><sub><it>n</it>+1</sub> = <it>g</it>(<it>x</it><sub><it>n</it>-<it>t</it></sub>, <it>y</it><sub><it>n</it>-<it>p</it></sub>), <it>n</it> = 0,1,2,..., where <it>p</it>, <it>q</it>, <it>s</it>, <it>t</it> &#8712; {0,1,2,...} with <it>s</it> &#8805; <it>t</it> and <it>p</it> &#8805; <it>q</it>, the initial values <it>x</it><sub>-<it>s</it></sub>, <it>x</it><sub>-<it>s</it>+1</sub>,...,<it>x</it><sub>0</sub>, <it>y</it><sub>-<it>p</it></sub>, <it>y</it><sub>-<it>p</it>+1</sub>,...<it>y</it><sub>0</sub> &#8712; (0,+&#8734;). We give sufficient conditions under which every positive solution of this system converges to the unique positive equilibrium.</p>http://www.advancesindifferenceequations.com/content/2006/051520
spellingShingle Xi Hongjian
Sun Taixiang
On the system of rational difference equations <it>x</it><sub><it>n</it>+1</sub> = <it>f</it>(<it>y</it><sub><it>n</it>-<it>q</it></sub>, <it>x</it><sub><it>n</it>-<it>s</it></sub>), <it>y</it><sub><it>n</it>+1</sub> = <it>g</it>(<it>x</it><sub><it>n</it>-<it>t</it></sub>, <it>y</it><sub><it>n</it>-<it>p</it></sub>)
Advances in Difference Equations
title On the system of rational difference equations <it>x</it><sub><it>n</it>+1</sub> = <it>f</it>(<it>y</it><sub><it>n</it>-<it>q</it></sub>, <it>x</it><sub><it>n</it>-<it>s</it></sub>), <it>y</it><sub><it>n</it>+1</sub> = <it>g</it>(<it>x</it><sub><it>n</it>-<it>t</it></sub>, <it>y</it><sub><it>n</it>-<it>p</it></sub>)
title_full On the system of rational difference equations <it>x</it><sub><it>n</it>+1</sub> = <it>f</it>(<it>y</it><sub><it>n</it>-<it>q</it></sub>, <it>x</it><sub><it>n</it>-<it>s</it></sub>), <it>y</it><sub><it>n</it>+1</sub> = <it>g</it>(<it>x</it><sub><it>n</it>-<it>t</it></sub>, <it>y</it><sub><it>n</it>-<it>p</it></sub>)
title_fullStr On the system of rational difference equations <it>x</it><sub><it>n</it>+1</sub> = <it>f</it>(<it>y</it><sub><it>n</it>-<it>q</it></sub>, <it>x</it><sub><it>n</it>-<it>s</it></sub>), <it>y</it><sub><it>n</it>+1</sub> = <it>g</it>(<it>x</it><sub><it>n</it>-<it>t</it></sub>, <it>y</it><sub><it>n</it>-<it>p</it></sub>)
title_full_unstemmed On the system of rational difference equations <it>x</it><sub><it>n</it>+1</sub> = <it>f</it>(<it>y</it><sub><it>n</it>-<it>q</it></sub>, <it>x</it><sub><it>n</it>-<it>s</it></sub>), <it>y</it><sub><it>n</it>+1</sub> = <it>g</it>(<it>x</it><sub><it>n</it>-<it>t</it></sub>, <it>y</it><sub><it>n</it>-<it>p</it></sub>)
title_short On the system of rational difference equations <it>x</it><sub><it>n</it>+1</sub> = <it>f</it>(<it>y</it><sub><it>n</it>-<it>q</it></sub>, <it>x</it><sub><it>n</it>-<it>s</it></sub>), <it>y</it><sub><it>n</it>+1</sub> = <it>g</it>(<it>x</it><sub><it>n</it>-<it>t</it></sub>, <it>y</it><sub><it>n</it>-<it>p</it></sub>)
title_sort on the system of rational difference equations it x it sub it n it 1 sub it f it it y it sub it n it it q it sub it x it sub it n it it s it sub it y it sub it n it 1 sub it g it it x it sub it n it it t it sub it y it sub it n it it p it sub
url http://www.advancesindifferenceequations.com/content/2006/051520
work_keys_str_mv AT xihongjian onthesystemofrationaldifferenceequationsitxitsubitnit1subitfitityitsubitnititqitsubitxitsubitnititsitsubityitsubitnit1subitgititxitsubitnitittitsubityitsubitnititpitsub
AT suntaixiang onthesystemofrationaldifferenceequationsitxitsubitnit1subitfitityitsubitnititqitsubitxitsubitnititsitsubityitsubitnit1subitgititxitsubitnitittitsubityitsubitnititpitsub