Radiative transport of MHD stagnation point flow of chemically reacting Carreau nanofluid due to radially stretched sheet

The flow of Carreau nanofluid with generation/absorption and magnetic field can be valuable for modifying solar energy production. In this work, we extended the study of the MHD boundary layer flow of Carreau nanofluid with heat generation/absorption close to a stagnation point over the radially ext...

Full description

Bibliographic Details
Main Authors: Abdul Kareem Abdul Jawwad, Muhammad Jawad, Kottakkaran Sooppy Nisar, Muhammad Saleem, Bassam Hasanain
Format: Article
Language:English
Published: Elsevier 2023-04-01
Series:Alexandria Engineering Journal
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1110016823001229
Description
Summary:The flow of Carreau nanofluid with generation/absorption and magnetic field can be valuable for modifying solar energy production. In this work, we extended the study of the MHD boundary layer flow of Carreau nanofluid with heat generation/absorption close to a stagnation point over the radially extending plate. Likewise, the features of radiation and magnetic field with convective boundary conditions are considered. Further, keeping in view the importance of chemical reactions, their effect is also incorporated during the modelling process. For motivation, the impact of thermophoresis and Brownian motion has been taken into account. Using appropriate similarity transformation, we converted nonlinear governing partial differential equations of Carreau nanofluid into a couple of nonlinear ODEs. Using a recognized shooting technique and the MATLAB bvp4c solver and Mathematica ND-solve built-in command, we were able to get numerical results for these modeled ODEs. Through graphs and tables, the effects of different physical parameters like magnetic, Weissenberg number, Brownian motion, thermal radiation, thermophoresis, Prandtl number, chemical reaction, and rate of heat generation/absorption on non-dimensional velocity, temperature, and concentration profile are discussed.
ISSN:1110-0168