Characterization of a Novel Packaged Hydrogel Wound Dressing by 2.35 T Magnetic Resonance Imaging

Hydrogel wound dressing makes easier the treatment of patients suffering from difficult wounds. A new process for the manufacturing of a sterile, packaged hydrogel wound dressing, based on an interpenetrating structure of calcium alginate, agar, and polyvinylpyrrolidone, was recently developed. The...

Full description

Bibliographic Details
Main Authors: Valentina Corradini, Leonardo A. Pajewski, Davide Di Censo, Marcello Alecci, Angelo Galante
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/12/1/188
Description
Summary:Hydrogel wound dressing makes easier the treatment of patients suffering from difficult wounds. A new process for the manufacturing of a sterile, packaged hydrogel wound dressing, based on an interpenetrating structure of calcium alginate, agar, and polyvinylpyrrolidone, was recently developed. The new formulation overtakes some previous technologies’ drawbacks expressing a better resistance to mechanical deformations compared to products on the market. In this work, the 2.35 T proton density, spin-lattice relaxation time, spin-spin relaxation time, phase-coherence relaxation, and water apparent diffusion coefficient analysis in the new hydrogel and several alternative formulations, including a commercial one (Neoheal<sup>®</sup>), are reported. Specifically, the combination of agar, acting as a thermolabile forming agent, with calcium alginate and γ irradiated polyvinylpyrrolidone, acting, respectively, as physical, and chemical crosslinking agents with an irreversible (temperature independent) effect, have been investigated. The new hydrogel formulation brings a qualitative improvement in its handling due to its increased mechanical stiffness when compared to the commercial hydrogel reference. This comes together with a reduced water content (100 vs. 112 for proton density in arbitrary units) and swelling capacity (88% vs. 124%) but with improved water mobility (1.42 vs. 1.34 × 10<sup>−3</sup> mm<sup>2</sup> s<sup>−1</sup> for the apparent diffusion coefficient).
ISSN:2079-9292