Methamphetamine Shows Different Joint Toxicity for Different Types of Microplastics on Zebrafish Larvae by Mediating Oxidative Stress
The coexistence of polystyrene (PS) and polypropylene (PVC) microplastics (MPs) and methamphetamine (METH) in aquatic systems is evident. However, the joint toxicity is unclear. Here, zebrafish larvae were exposed to single PS and PVC MPs (20 mg L<sup>−1</sup>) and combined with METH (25...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-12-01
|
Series: | Toxics |
Subjects: | |
Online Access: | https://www.mdpi.com/2305-6304/12/1/9 |
_version_ | 1797342512293085184 |
---|---|
author | Jindong Xu Wenqi Yang Dongyi Wang Zhenglu Wang Chuang Liu Jiana Li |
author_facet | Jindong Xu Wenqi Yang Dongyi Wang Zhenglu Wang Chuang Liu Jiana Li |
author_sort | Jindong Xu |
collection | DOAJ |
description | The coexistence of polystyrene (PS) and polypropylene (PVC) microplastics (MPs) and methamphetamine (METH) in aquatic systems is evident. However, the joint toxicity is unclear. Here, zebrafish larvae were exposed to single PS and PVC MPs (20 mg L<sup>−1</sup>) and combined with METH (250 and 500 μg L<sup>−1</sup>) for 10 days. The results indicated that acute exposure to PS and PVC MPs induced lethal effects on zebrafish larvae (10–20%). Treatment with MPs markedly suppressed the locomotion of zebrafish, showing as the lengthy immobility (51–74%) and lower velocity (0.09–0.55 cm s<sup>−1</sup>) compared with the control (1.07 cm s<sup>−1</sup>). Meanwhile, histopathological analysis revealed pronounced depositions of MPs particles in fish’s intestinal tract, triggering inflammatory responses (histological scores: 1.6–2.0). In the coexposure groups, obviously inflammatory responses were found. Furthermore, the up-regulations of the genes involved in the oxidative kinase gene and inflammation related genes implied that oxidative stress triggered by MPs on zebrafish larvae might be responsible for the mortality and locomotion retardant. The antagonistic and stimulatory effects of METH on the expression changes of genes found in PVC and PS groups implied the contrary combined toxicity of PS/PVC MPs and METH. This study for the first time estimated the different toxicity of PS and PVC MPs on fish and the joint effects with METH at high environmental levels. The results suggested PS showed stronger toxicity than PVC for fish larvae. The addition of METH stimulated the effects of PS but antagonized the effects of PVC, promoting control strategy development on MPs and METH in aquatic environments. |
first_indexed | 2024-03-08T10:34:40Z |
format | Article |
id | doaj.art-b10526f97cdc4848b2dc6b6b31c815c2 |
institution | Directory Open Access Journal |
issn | 2305-6304 |
language | English |
last_indexed | 2024-03-08T10:34:40Z |
publishDate | 2023-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Toxics |
spelling | doaj.art-b10526f97cdc4848b2dc6b6b31c815c22024-01-26T18:40:50ZengMDPI AGToxics2305-63042023-12-01121910.3390/toxics12010009Methamphetamine Shows Different Joint Toxicity for Different Types of Microplastics on Zebrafish Larvae by Mediating Oxidative StressJindong Xu0Wenqi Yang1Dongyi Wang2Zhenglu Wang3Chuang Liu4Jiana Li5College of Oceanography, Hohai University, Nanjing 210098, ChinaCollege of Oceanography, Hohai University, Nanjing 210098, ChinaCollege of Oceanography, Hohai University, Nanjing 210098, ChinaWest China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, ChinaCollege of Oceanography, Hohai University, Nanjing 210098, ChinaNingbo Academy of Ecological and Environmental Sciences, Ningbo 315000, ChinaThe coexistence of polystyrene (PS) and polypropylene (PVC) microplastics (MPs) and methamphetamine (METH) in aquatic systems is evident. However, the joint toxicity is unclear. Here, zebrafish larvae were exposed to single PS and PVC MPs (20 mg L<sup>−1</sup>) and combined with METH (250 and 500 μg L<sup>−1</sup>) for 10 days. The results indicated that acute exposure to PS and PVC MPs induced lethal effects on zebrafish larvae (10–20%). Treatment with MPs markedly suppressed the locomotion of zebrafish, showing as the lengthy immobility (51–74%) and lower velocity (0.09–0.55 cm s<sup>−1</sup>) compared with the control (1.07 cm s<sup>−1</sup>). Meanwhile, histopathological analysis revealed pronounced depositions of MPs particles in fish’s intestinal tract, triggering inflammatory responses (histological scores: 1.6–2.0). In the coexposure groups, obviously inflammatory responses were found. Furthermore, the up-regulations of the genes involved in the oxidative kinase gene and inflammation related genes implied that oxidative stress triggered by MPs on zebrafish larvae might be responsible for the mortality and locomotion retardant. The antagonistic and stimulatory effects of METH on the expression changes of genes found in PVC and PS groups implied the contrary combined toxicity of PS/PVC MPs and METH. This study for the first time estimated the different toxicity of PS and PVC MPs on fish and the joint effects with METH at high environmental levels. The results suggested PS showed stronger toxicity than PVC for fish larvae. The addition of METH stimulated the effects of PS but antagonized the effects of PVC, promoting control strategy development on MPs and METH in aquatic environments.https://www.mdpi.com/2305-6304/12/1/9microplasticsmethamphetaminejoint toxicitybehavioral functionsoxidative stress |
spellingShingle | Jindong Xu Wenqi Yang Dongyi Wang Zhenglu Wang Chuang Liu Jiana Li Methamphetamine Shows Different Joint Toxicity for Different Types of Microplastics on Zebrafish Larvae by Mediating Oxidative Stress Toxics microplastics methamphetamine joint toxicity behavioral functions oxidative stress |
title | Methamphetamine Shows Different Joint Toxicity for Different Types of Microplastics on Zebrafish Larvae by Mediating Oxidative Stress |
title_full | Methamphetamine Shows Different Joint Toxicity for Different Types of Microplastics on Zebrafish Larvae by Mediating Oxidative Stress |
title_fullStr | Methamphetamine Shows Different Joint Toxicity for Different Types of Microplastics on Zebrafish Larvae by Mediating Oxidative Stress |
title_full_unstemmed | Methamphetamine Shows Different Joint Toxicity for Different Types of Microplastics on Zebrafish Larvae by Mediating Oxidative Stress |
title_short | Methamphetamine Shows Different Joint Toxicity for Different Types of Microplastics on Zebrafish Larvae by Mediating Oxidative Stress |
title_sort | methamphetamine shows different joint toxicity for different types of microplastics on zebrafish larvae by mediating oxidative stress |
topic | microplastics methamphetamine joint toxicity behavioral functions oxidative stress |
url | https://www.mdpi.com/2305-6304/12/1/9 |
work_keys_str_mv | AT jindongxu methamphetamineshowsdifferentjointtoxicityfordifferenttypesofmicroplasticsonzebrafishlarvaebymediatingoxidativestress AT wenqiyang methamphetamineshowsdifferentjointtoxicityfordifferenttypesofmicroplasticsonzebrafishlarvaebymediatingoxidativestress AT dongyiwang methamphetamineshowsdifferentjointtoxicityfordifferenttypesofmicroplasticsonzebrafishlarvaebymediatingoxidativestress AT zhengluwang methamphetamineshowsdifferentjointtoxicityfordifferenttypesofmicroplasticsonzebrafishlarvaebymediatingoxidativestress AT chuangliu methamphetamineshowsdifferentjointtoxicityfordifferenttypesofmicroplasticsonzebrafishlarvaebymediatingoxidativestress AT jianali methamphetamineshowsdifferentjointtoxicityfordifferenttypesofmicroplasticsonzebrafishlarvaebymediatingoxidativestress |