The Diffusion Role in Adsorption of Hexavalent Chromium on Solid Olive Mill Waste

The removal of Cr(VI) ions from aqueous solutions with wet pomace treated with laponite was investigated. A direct comparison with untreated biomass revealed an increase in both the rate of adsorption and the amount adsorbed. A cooperative interaction between the laponite platelets and biomass surfa...

Full description

Bibliographic Details
Main Authors: Gennaro Bufalo, Francesca Di Nezza, Marco Perna, Stefano Salvestrini, Luigi Ambrosone
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/7/3096
Description
Summary:The removal of Cr(VI) ions from aqueous solutions with wet pomace treated with laponite was investigated. A direct comparison with untreated biomass revealed an increase in both the rate of adsorption and the amount adsorbed. A cooperative interaction between the laponite platelets and biomass surface making more adsorption sites accessible was suggested. In this process, a key role is played by intraparticle diffusion. The experimental results indicate that intraparticle diffusion plays an important role in the adsorption process. A simple diffusion-binding model is presented to discuss the experimental results. The diffusion lifetime is linearly related to the adsorbent mass. The model combined with experimental results allowed us to estimate the average free path of a Cr(VI) molecule. Particularly, it was obtained that, in 1 dm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>3</mn></msup></semantics></math></inline-formula> of solution, the diffusion path increased by nearly 1 cm per gram of adsorbent. However, this did not imply that the amount of Cr(VI) removed decreased because the total number of adsorption sites also increased.
ISSN:2076-3417