Accuracy of generative deep learning model for macular anatomy prediction from optical coherence tomography images in macular hole surgery
Abstract This study aims to propose a generative deep learning model (GDLM) based on a variational autoencoder that predicts macular optical coherence tomography (OCT) images following full-thickness macular hole (FTMH) surgery and evaluate its clinical accuracy. Preoperative and 6-month postoperati...
Główni autorzy: | , , , , |
---|---|
Format: | Artykuł |
Język: | English |
Wydane: |
Nature Portfolio
2024-03-01
|
Seria: | Scientific Reports |
Hasła przedmiotowe: | |
Dostęp online: | https://doi.org/10.1038/s41598-024-57562-5 |