Accuracy of generative deep learning model for macular anatomy prediction from optical coherence tomography images in macular hole surgery
Abstract This study aims to propose a generative deep learning model (GDLM) based on a variational autoencoder that predicts macular optical coherence tomography (OCT) images following full-thickness macular hole (FTMH) surgery and evaluate its clinical accuracy. Preoperative and 6-month postoperati...
Κύριοι συγγραφείς: | , , , , |
---|---|
Μορφή: | Άρθρο |
Γλώσσα: | English |
Έκδοση: |
Nature Portfolio
2024-03-01
|
Σειρά: | Scientific Reports |
Θέματα: | |
Διαθέσιμο Online: | https://doi.org/10.1038/s41598-024-57562-5 |