Accuracy of generative deep learning model for macular anatomy prediction from optical coherence tomography images in macular hole surgery
Abstract This study aims to propose a generative deep learning model (GDLM) based on a variational autoencoder that predicts macular optical coherence tomography (OCT) images following full-thickness macular hole (FTMH) surgery and evaluate its clinical accuracy. Preoperative and 6-month postoperati...
Những tác giả chính: | , , , , |
---|---|
Định dạng: | Bài viết |
Ngôn ngữ: | English |
Được phát hành: |
Nature Portfolio
2024-03-01
|
Loạt: | Scientific Reports |
Những chủ đề: | |
Truy cập trực tuyến: | https://doi.org/10.1038/s41598-024-57562-5 |