A semilinear heat equation with concave-convex nonlinearity

In this paper, we are interested in the parabolic equation u_t − ∆u = λu^q + u^p in a bounded domain of IR^N, with the Dirichlet boundary condition and the parameters 0 < q < 1 < p and λ > 0. We study the initial value problem and the global behavior of the the positive solutions. We are...

Full description

Bibliographic Details
Main Authors: T. Cazenave, F. Dickstein, M. Escobedo
Format: Article
Language:English
Published: Sapienza Università Editrice 1999-01-01
Series:Rendiconti di Matematica e delle Sue Applicazioni
Subjects:
Online Access:https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1999(2)/211-242.pdf
_version_ 1818212868975230976
author T. Cazenave
F. Dickstein
M. Escobedo
author_facet T. Cazenave
F. Dickstein
M. Escobedo
author_sort T. Cazenave
collection DOAJ
description In this paper, we are interested in the parabolic equation u_t − ∆u = λu^q + u^p in a bounded domain of IR^N, with the Dirichlet boundary condition and the parameters 0 < q < 1 < p and λ > 0. We study the initial value problem and the global behavior of the the positive solutions. We are mainly interested in the relations between the global (in time) solutions of the parabolic equation and the solutions of the stationary, elliptic problem. We show in particular that there exists a global solution if and only if there exists a weak solution of the stationary equation.
first_indexed 2024-12-12T05:55:14Z
format Article
id doaj.art-b1119ff60c594dff93b57f3fede0106b
institution Directory Open Access Journal
issn 1120-7183
2532-3350
language English
last_indexed 2024-12-12T05:55:14Z
publishDate 1999-01-01
publisher Sapienza Università Editrice
record_format Article
series Rendiconti di Matematica e delle Sue Applicazioni
spelling doaj.art-b1119ff60c594dff93b57f3fede0106b2022-12-22T00:35:34ZengSapienza Università EditriceRendiconti di Matematica e delle Sue Applicazioni1120-71832532-33501999-01-01192211242A semilinear heat equation with concave-convex nonlinearityT. Cazenave0F. Dickstein1M. Escobedo2Université Pierre et Marie CurieUniversidade Federal do Rio de JaneiroUniversidad del País VascoIn this paper, we are interested in the parabolic equation u_t − ∆u = λu^q + u^p in a bounded domain of IR^N, with the Dirichlet boundary condition and the parameters 0 < q < 1 < p and λ > 0. We study the initial value problem and the global behavior of the the positive solutions. We are mainly interested in the relations between the global (in time) solutions of the parabolic equation and the solutions of the stationary, elliptic problem. We show in particular that there exists a global solution if and only if there exists a weak solution of the stationary equation.https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1999(2)/211-242.pdfnonlinearparabolicellipticinitial value problemglobal solutionfinite-time blow upweak solutionsupersolution
spellingShingle T. Cazenave
F. Dickstein
M. Escobedo
A semilinear heat equation with concave-convex nonlinearity
Rendiconti di Matematica e delle Sue Applicazioni
nonlinear
parabolic
elliptic
initial value problem
global solution
finite-time blow up
weak solution
supersolution
title A semilinear heat equation with concave-convex nonlinearity
title_full A semilinear heat equation with concave-convex nonlinearity
title_fullStr A semilinear heat equation with concave-convex nonlinearity
title_full_unstemmed A semilinear heat equation with concave-convex nonlinearity
title_short A semilinear heat equation with concave-convex nonlinearity
title_sort semilinear heat equation with concave convex nonlinearity
topic nonlinear
parabolic
elliptic
initial value problem
global solution
finite-time blow up
weak solution
supersolution
url https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1999(2)/211-242.pdf
work_keys_str_mv AT tcazenave asemilinearheatequationwithconcaveconvexnonlinearity
AT fdickstein asemilinearheatequationwithconcaveconvexnonlinearity
AT mescobedo asemilinearheatequationwithconcaveconvexnonlinearity
AT tcazenave semilinearheatequationwithconcaveconvexnonlinearity
AT fdickstein semilinearheatequationwithconcaveconvexnonlinearity
AT mescobedo semilinearheatequationwithconcaveconvexnonlinearity