Behavior of Cohesive Soil Reinforced by Polypropylene Fiber
For any land-based structure, the foundation is very important and has to be strong to support the entire structure. In order for the foundation to be strong, the soil underneath it plays a very critical role. Some projects where the soil compacted by modifying energy is insufficient to achieve the...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Unviversity of Technology- Iraq
2020-06-01
|
Series: | Engineering and Technology Journal |
Subjects: | |
Online Access: | https://etj.uotechnology.edu.iq/article_169066_02e5fa977483f2ae3e2233f3b83943e2.pdf |
Summary: | For any land-based structure, the foundation is very important and has to be strong to support the entire structure. In order for the foundation to be strong, the soil underneath it plays a very critical role. Some projects where the soil compacted by modifying energy is insufficient to achieve the required results, so the additives as a kind of installation and reinforcement are used to achieve the required improvement. This study introduces an attempt to improve cohesive soil by using Polypropylene Fiber instead of conventional kinds used in soil stabilization. Three different percentages (0.25%, 0.5%, and 0.75% by dry weight of soil) and lengths (6, 12, and 18) mm of fiber are mixed with cohesive as a trial to enhance some properties of clay. The results of soil samples prepared at a dry density at three different water conditions (optimum water content, dry side, and wet side) showed that the increase of the percentage and length of polypropylene fiber causes a reduction in the maximum dry density of soils. Soil cohesion increases with the increase of PPF up to 0.5% then decreased. The length of Polypropylene fiber has a great effect on the cohesion of soil and adding 0.5% Polypropylene fibers with a length of 18mm to the soils consider the optimum mix for design purposes to improve the soil. Finally, the soil reinforced by PPF exhibits a reduction in the values of the compression ratio (CR) and accelerates the consolidation of the soil. |
---|---|
ISSN: | 1681-6900 2412-0758 |