Potential of Hyperspectral Thermal Infrared Spaceborne Measurements to Retrieve Ice Cloud Physical Properties: Case Study of IASI and IASI-NG

The present study aims to quantify the potential of hyperspectral thermal infrared sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and the future IASI next generation (IASI-NG) for retrieving the ice cloud layer altitude and thickness together with the ice water path. We emp...

Full description

Bibliographic Details
Main Authors: Lucie Leonarski, Laurent C.-Labonnote, Mathieu Compiègne, Jérôme Vidot, Anthony J. Baran, Philippe Dubuisson
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/1/116
_version_ 1827698784786710528
author Lucie Leonarski
Laurent C.-Labonnote
Mathieu Compiègne
Jérôme Vidot
Anthony J. Baran
Philippe Dubuisson
author_facet Lucie Leonarski
Laurent C.-Labonnote
Mathieu Compiègne
Jérôme Vidot
Anthony J. Baran
Philippe Dubuisson
author_sort Lucie Leonarski
collection DOAJ
description The present study aims to quantify the potential of hyperspectral thermal infrared sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and the future IASI next generation (IASI-NG) for retrieving the ice cloud layer altitude and thickness together with the ice water path. We employed the radiative transfer model Radiative Transfer for TOVS (RTTOV) to simulate cloudy radiances using parameterized ice cloud optical properties. The radiances have been computed from an ice cloud profile database coming from global operational short-range forecasts at the European Center for Medium-range Weather Forecasts (ECMWF) which encloses the normal conditions, typical variability, and extremes of the atmospheric properties over one year (Eresmaa and McNally (2014)). We performed an information content analysis based on Shannon’s formalism to determine the amount and spectral distribution of the information about ice cloud properties. Based on this analysis, a retrieval algorithm has been developed and tested on the profile database. We considered the signal-to-noise ratio of each specific instrument and the non-retrieved atmospheric and surface parameter errors. This study brings evidence that the observing system provides information on the ice water path (<inline-formula><math display="inline"><semantics><mrow><mi>I</mi><mi>W</mi><mi>P</mi></mrow></semantics></math></inline-formula>) as well as on the layer altitude and thickness with a convergence rate up to 95% and expected errors that decrease with cloud opacity until the signal saturation is reached (satisfying retrievals are achieved for clouds whose <inline-formula><math display="inline"><semantics><mrow><mi>I</mi><mi>W</mi><mi>P</mi></mrow></semantics></math></inline-formula> is between about 1 and 300 <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="normal">g</mi><mo>/</mo><msup><mi mathvariant="normal">m</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula>).
first_indexed 2024-03-10T13:36:05Z
format Article
id doaj.art-b137ebfe9e73470a85525ce8e22fa61f
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-10T13:36:05Z
publishDate 2020-12-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-b137ebfe9e73470a85525ce8e22fa61f2023-11-21T07:33:40ZengMDPI AGRemote Sensing2072-42922020-12-0113111610.3390/rs13010116Potential of Hyperspectral Thermal Infrared Spaceborne Measurements to Retrieve Ice Cloud Physical Properties: Case Study of IASI and IASI-NGLucie Leonarski0Laurent C.-Labonnote1Mathieu Compiègne2Jérôme Vidot3Anthony J. Baran4Philippe Dubuisson5CNRS, UMR 8518—LOA—Laboratoire d’Optique Atmosphérique, University of Lille, F-59000 Lille, FranceCNRS, UMR 8518—LOA—Laboratoire d’Optique Atmosphérique, University of Lille, F-59000 Lille, FranceHygeos, F-59000 Lille, FranceCNRM, Université de Toulouse, Météo-France, CNRS, F-22300 Lannion, FranceMet Office, Exeter EX1 3PB, UKCNRS, UMR 8518—LOA—Laboratoire d’Optique Atmosphérique, University of Lille, F-59000 Lille, FranceThe present study aims to quantify the potential of hyperspectral thermal infrared sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and the future IASI next generation (IASI-NG) for retrieving the ice cloud layer altitude and thickness together with the ice water path. We employed the radiative transfer model Radiative Transfer for TOVS (RTTOV) to simulate cloudy radiances using parameterized ice cloud optical properties. The radiances have been computed from an ice cloud profile database coming from global operational short-range forecasts at the European Center for Medium-range Weather Forecasts (ECMWF) which encloses the normal conditions, typical variability, and extremes of the atmospheric properties over one year (Eresmaa and McNally (2014)). We performed an information content analysis based on Shannon’s formalism to determine the amount and spectral distribution of the information about ice cloud properties. Based on this analysis, a retrieval algorithm has been developed and tested on the profile database. We considered the signal-to-noise ratio of each specific instrument and the non-retrieved atmospheric and surface parameter errors. This study brings evidence that the observing system provides information on the ice water path (<inline-formula><math display="inline"><semantics><mrow><mi>I</mi><mi>W</mi><mi>P</mi></mrow></semantics></math></inline-formula>) as well as on the layer altitude and thickness with a convergence rate up to 95% and expected errors that decrease with cloud opacity until the signal saturation is reached (satisfying retrievals are achieved for clouds whose <inline-formula><math display="inline"><semantics><mrow><mi>I</mi><mi>W</mi><mi>P</mi></mrow></semantics></math></inline-formula> is between about 1 and 300 <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="normal">g</mi><mo>/</mo><msup><mi mathvariant="normal">m</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula>).https://www.mdpi.com/2072-4292/13/1/116ice cloudsthermal infraredretrieval of geophysical parameters from spectral radiance measurements
spellingShingle Lucie Leonarski
Laurent C.-Labonnote
Mathieu Compiègne
Jérôme Vidot
Anthony J. Baran
Philippe Dubuisson
Potential of Hyperspectral Thermal Infrared Spaceborne Measurements to Retrieve Ice Cloud Physical Properties: Case Study of IASI and IASI-NG
Remote Sensing
ice clouds
thermal infrared
retrieval of geophysical parameters from spectral radiance measurements
title Potential of Hyperspectral Thermal Infrared Spaceborne Measurements to Retrieve Ice Cloud Physical Properties: Case Study of IASI and IASI-NG
title_full Potential of Hyperspectral Thermal Infrared Spaceborne Measurements to Retrieve Ice Cloud Physical Properties: Case Study of IASI and IASI-NG
title_fullStr Potential of Hyperspectral Thermal Infrared Spaceborne Measurements to Retrieve Ice Cloud Physical Properties: Case Study of IASI and IASI-NG
title_full_unstemmed Potential of Hyperspectral Thermal Infrared Spaceborne Measurements to Retrieve Ice Cloud Physical Properties: Case Study of IASI and IASI-NG
title_short Potential of Hyperspectral Thermal Infrared Spaceborne Measurements to Retrieve Ice Cloud Physical Properties: Case Study of IASI and IASI-NG
title_sort potential of hyperspectral thermal infrared spaceborne measurements to retrieve ice cloud physical properties case study of iasi and iasi ng
topic ice clouds
thermal infrared
retrieval of geophysical parameters from spectral radiance measurements
url https://www.mdpi.com/2072-4292/13/1/116
work_keys_str_mv AT lucieleonarski potentialofhyperspectralthermalinfraredspacebornemeasurementstoretrieveicecloudphysicalpropertiescasestudyofiasiandiasing
AT laurentclabonnote potentialofhyperspectralthermalinfraredspacebornemeasurementstoretrieveicecloudphysicalpropertiescasestudyofiasiandiasing
AT mathieucompiegne potentialofhyperspectralthermalinfraredspacebornemeasurementstoretrieveicecloudphysicalpropertiescasestudyofiasiandiasing
AT jeromevidot potentialofhyperspectralthermalinfraredspacebornemeasurementstoretrieveicecloudphysicalpropertiescasestudyofiasiandiasing
AT anthonyjbaran potentialofhyperspectralthermalinfraredspacebornemeasurementstoretrieveicecloudphysicalpropertiescasestudyofiasiandiasing
AT philippedubuisson potentialofhyperspectralthermalinfraredspacebornemeasurementstoretrieveicecloudphysicalpropertiescasestudyofiasiandiasing