SAR-HUB: Pre-Training, Fine-Tuning, and Explaining

Since the current remote sensing pre-trained models trained on optical images are not as effective when applied to SAR image tasks, it is crucial to create sensor-specific SAR models with generalized feature representations and to demonstrate with evidence the limitations of optical pre-trained mode...

Full description

Bibliographic Details
Main Authors: Haodong Yang, Xinyue Kang, Long Liu, Yujiang Liu, Zhongling Huang
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/15/23/5534
Description
Summary:Since the current remote sensing pre-trained models trained on optical images are not as effective when applied to SAR image tasks, it is crucial to create sensor-specific SAR models with generalized feature representations and to demonstrate with evidence the limitations of optical pre-trained models in downstream SAR tasks. The following aspects are the focus of this study: pre-training, fine-tuning, and explaining. First, we collect the current large-scale open-source SAR scene image classification datasets to pre-train a series of deep neural networks, including convolutional neural networks (CNNs) and vision transformers (ViT). A novel dynamic range adaptive enhancement method and a mini-batch class-balanced loss are proposed to tackle the challenges in SAR scene image classification. Second, the pre-trained models are transferred to various SAR downstream tasks compared with optical ones. Lastly, we propose a novel knowledge point interpretation method to reveal the benefits of the SAR pre-trained model with comprehensive and quantifiable explanations. This study is reproducible using open-source code and datasets, demonstrates generalization through extensive experiments on a variety of tasks, and is interpretable through qualitative and quantitative analyses. The codes and models are open source.
ISSN:2072-4292