Yamaguchi -Noshiro Type Bi-Univalent Functions Associated with Sălăgean-Erdély–Kober Operator

We defined two new subclasses of analytic bi-univalent function class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Σ</mo><mo>,</mo></mrow></semantics></math>...

Full description

Bibliographic Details
Main Authors: Asma Alharbi, Gangadharan Murugusundaramoorthy, Sheza. M. El-Deeb
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/13/2241
_version_ 1797408672139182080
author Asma Alharbi
Gangadharan Murugusundaramoorthy
Sheza. M. El-Deeb
author_facet Asma Alharbi
Gangadharan Murugusundaramoorthy
Sheza. M. El-Deeb
author_sort Asma Alharbi
collection DOAJ
description We defined two new subclasses of analytic bi-univalent function class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Σ</mo><mo>,</mo></mrow></semantics></math></inline-formula> in the open unit disk related with the Sălăgean–Erdély–Kober operator. The bounds on initial coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">|</mo></mrow><msub><mi>a</mi><mn>2</mn></msub><mrow><mo stretchy="false">|</mo><mo>,</mo><mo stretchy="false">|</mo></mrow><msub><mi>a</mi><mn>3</mn></msub><mrow><mo stretchy="false">|</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">|</mo></mrow><msub><mi>a</mi><mn>4</mn></msub><mrow><mo stretchy="false">|</mo></mrow></mrow></semantics></math></inline-formula> for the functions in these new subclasses of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Σ</mo></semantics></math></inline-formula> are investigated. Using the estimates of coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>a</mi><mn>2</mn></msub><mo>,</mo><msub><mi>a</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula>, we also discuss the Fekete-Szegö inequality results for the function classes defined in this paper. Relevant connections of these results, presented here as corollaries, are new and not studied in association with Sălăgean-Erdély–Kober operator for the subclasses defined earlier.
first_indexed 2024-03-09T04:02:48Z
format Article
id doaj.art-b14f2bad17d94baf87c2351e123072a0
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T04:02:48Z
publishDate 2022-06-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-b14f2bad17d94baf87c2351e123072a02023-12-03T14:11:54ZengMDPI AGMathematics2227-73902022-06-011013224110.3390/math10132241Yamaguchi -Noshiro Type Bi-Univalent Functions Associated with Sălăgean-Erdély–Kober OperatorAsma Alharbi0Gangadharan Murugusundaramoorthy1Sheza. M. El-Deeb2Department of Mathematics, College of Science and Arts, ArRass, Qassim University, Buraidah 51452, Saudi ArabiaSchool of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, TN, IndiaDepartment of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, EgyptWe defined two new subclasses of analytic bi-univalent function class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Σ</mo><mo>,</mo></mrow></semantics></math></inline-formula> in the open unit disk related with the Sălăgean–Erdély–Kober operator. The bounds on initial coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">|</mo></mrow><msub><mi>a</mi><mn>2</mn></msub><mrow><mo stretchy="false">|</mo><mo>,</mo><mo stretchy="false">|</mo></mrow><msub><mi>a</mi><mn>3</mn></msub><mrow><mo stretchy="false">|</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo stretchy="false">|</mo></mrow><msub><mi>a</mi><mn>4</mn></msub><mrow><mo stretchy="false">|</mo></mrow></mrow></semantics></math></inline-formula> for the functions in these new subclasses of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Σ</mo></semantics></math></inline-formula> are investigated. Using the estimates of coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>a</mi><mn>2</mn></msub><mo>,</mo><msub><mi>a</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula>, we also discuss the Fekete-Szegö inequality results for the function classes defined in this paper. Relevant connections of these results, presented here as corollaries, are new and not studied in association with Sălăgean-Erdély–Kober operator for the subclasses defined earlier.https://www.mdpi.com/2227-7390/10/13/2241univalent functionsanalytic functionsbi-univalent functionsSălăgean operatorErdély–Kober fractional-order derivativecoefficient bounds
spellingShingle Asma Alharbi
Gangadharan Murugusundaramoorthy
Sheza. M. El-Deeb
Yamaguchi -Noshiro Type Bi-Univalent Functions Associated with Sălăgean-Erdély–Kober Operator
Mathematics
univalent functions
analytic functions
bi-univalent functions
Sălăgean operator
Erdély–Kober fractional-order derivative
coefficient bounds
title Yamaguchi -Noshiro Type Bi-Univalent Functions Associated with Sălăgean-Erdély–Kober Operator
title_full Yamaguchi -Noshiro Type Bi-Univalent Functions Associated with Sălăgean-Erdély–Kober Operator
title_fullStr Yamaguchi -Noshiro Type Bi-Univalent Functions Associated with Sălăgean-Erdély–Kober Operator
title_full_unstemmed Yamaguchi -Noshiro Type Bi-Univalent Functions Associated with Sălăgean-Erdély–Kober Operator
title_short Yamaguchi -Noshiro Type Bi-Univalent Functions Associated with Sălăgean-Erdély–Kober Operator
title_sort yamaguchi noshiro type bi univalent functions associated with salagean erdely kober operator
topic univalent functions
analytic functions
bi-univalent functions
Sălăgean operator
Erdély–Kober fractional-order derivative
coefficient bounds
url https://www.mdpi.com/2227-7390/10/13/2241
work_keys_str_mv AT asmaalharbi yamaguchinoshirotypebiunivalentfunctionsassociatedwithsalageanerdelykoberoperator
AT gangadharanmurugusundaramoorthy yamaguchinoshirotypebiunivalentfunctionsassociatedwithsalageanerdelykoberoperator
AT shezameldeeb yamaguchinoshirotypebiunivalentfunctionsassociatedwithsalageanerdelykoberoperator