On the exponential Diophantine equation $ \left(\frac{q^{2l}-p^{2k}}{2}n\right)^x+(p^kq^ln)^y = \left(\frac{q^{2l}+p^{2k}}{2}n\right)^z $
Let $ k, l, m_1, m_2 $ be positive integers and let both $ p $ and $ q $ be odd primes such that $ p^k = 2^{m_1}-a^{m_2} $ and $ q^l = 2^{m_1}+a^{m_2} $ where $ a $ is odd prime with $ a\equiv 5\pmod 8 $ and $ a\not\equiv 1\pmod 5 $. In this paper, using only the elementary methods of factorization,...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2022-03-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | http://www.aimspress.com/article/doi/10.3934/math.2022481?viewType=HTML |
Summary: | Let $ k, l, m_1, m_2 $ be positive integers and let both $ p $ and $ q $ be odd primes such that $ p^k = 2^{m_1}-a^{m_2} $ and $ q^l = 2^{m_1}+a^{m_2} $ where $ a $ is odd prime with $ a\equiv 5\pmod 8 $ and $ a\not\equiv 1\pmod 5 $. In this paper, using only the elementary methods of factorization, congruence methods and the quadratic reciprocity law, we show that the exponential Diophantine equation $ \left(\frac{q^{2l}-p^{2k}}{2}n\right)^x+(p^kq^ln)^y = \left(\frac{q^{2l}+p^{2k}}{2}n\right)^z $ has only the positive integer solution $ (x, y, z) = (2, 2, 2) $. |
---|---|
ISSN: | 2473-6988 |