Shallow structures, interactions, and recurrent vertical motions of active faults in Lingayen Gulf, Philippines

The surface trace of the East Zambales Fault (EZF) and its associated faults in the Lingayen Gulf have been previously mapped but no other characteristics were reported. This study utilized seismic reflection, multi-beam bathymetry, and side scan sonar to characterize the offshore EZF in terms of ma...

Full description

Bibliographic Details
Main Authors: Paul Caesar M. Flores, Fernando P. Siringan, Zenon Richard P. Mateo, Bryan J. Marfito, Keanu Jershon S. Sarmiento, Maria Isabel T. Abigania, Arturo S. Daag, Yolanda Maac-Aguilar
Format: Article
Language:English
Published: Elsevier 2023-06-01
Series:Journal of Asian Earth Sciences: X
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590056023000178
Description
Summary:The surface trace of the East Zambales Fault (EZF) and its associated faults in the Lingayen Gulf have been previously mapped but no other characteristics were reported. This study utilized seismic reflection, multi-beam bathymetry, and side scan sonar to characterize the offshore EZF in terms of magnitudes of vertical displacement. Sequence stratigraphy and radiocarbon dates provided age constraints on the recurrence interval within the Holocene.The EZF extends for ∼ 57 km into the gulf, follows a north-northwest trend, and bounds the karstic terrane (west) and fluvio-deltaic deposits (east). Sinistral motion is indicated by: 1) normal and reverse drag geometries, 2) reversal in the sense of throw with depth, 3) flower structure, and 4) right-stepping and the uplift of a pressure ridge named Pudoc Bathymetric High. The Central Lingayen Gulf Fault (CLGF), to the east of EZF, follows the same trend. The Lingayen Gulf Transverse Fault (LGTF), oriented east–west, forms a flower structure with the CLGF. The EZF, CLGF, and LGTF combined form the Lingayen Gulf Fault System, which divides the gulf into five fault blocks where uplift and subsidence locally occurred.A paleo-delta at −60 m yielded an age of 6.8 kyBP, indicating it was formed during the first Holocene highstand. With natural compaction considered, fault-associated subsidence of 46–53 m may have occurred. The average Holocene vertical displacement is 2.1–2.2 m, which translates to a recurrence interval of 320–270 years for the fault system. The faults can likely generate earthquakes with magnitudes 7.5 (EZF), 6.7 (CLGF), and 6.6 (LGTF).
ISSN:2590-0560