Direct analogues of Wiman's inequality for analytic functions in the unit disc

Let $f(z)=sum_{n=0}^{infty} a_n z^n$ be an analytic function on${z:|z|<1}, hin H$ and$Omega_f(r)= sum_{n=0}^{infty} |a_n| r^n$. If$$eta_{fh}=varliminflimits_{ro1}frac{lnlnOmega_f(r)}{ln h(r)}=+infty,$$then Wiman's inequality$M_f(r)leq mu_f(r) ln^{1/2+delta}mu_f(r)$is true for all $rin (r_0,...

Full description

Bibliographic Details
Main Authors: Skaskiv O.B., Kuryliak A.O.
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2010-06-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Online Access:http://journals.pu.if.ua/index.php/cmp/article/view/51/43
_version_ 1818303599524970496
author Skaskiv O.B.
Kuryliak A.O.
author_facet Skaskiv O.B.
Kuryliak A.O.
author_sort Skaskiv O.B.
collection DOAJ
description Let $f(z)=sum_{n=0}^{infty} a_n z^n$ be an analytic function on${z:|z|<1}, hin H$ and$Omega_f(r)= sum_{n=0}^{infty} |a_n| r^n$. If$$eta_{fh}=varliminflimits_{ro1}frac{lnlnOmega_f(r)}{ln h(r)}=+infty,$$then Wiman's inequality$M_f(r)leq mu_f(r) ln^{1/2+delta}mu_f(r)$is true for all $rin (r_0, 1)ackslash E(delta)$, where $h-mbox{meas} E<+infty.$
first_indexed 2024-12-13T05:57:22Z
format Article
id doaj.art-b167cde3ec6945efa75cf3d1a893d1fb
institution Directory Open Access Journal
issn 2075-9827
language English
last_indexed 2024-12-13T05:57:22Z
publishDate 2010-06-01
publisher Vasyl Stefanyk Precarpathian National University
record_format Article
series Karpatsʹkì Matematičnì Publìkacìï
spelling doaj.art-b167cde3ec6945efa75cf3d1a893d1fb2022-12-21T23:57:25ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272010-06-0121109118Direct analogues of Wiman's inequality for analytic functions in the unit discSkaskiv O.B.Kuryliak A.O.Let $f(z)=sum_{n=0}^{infty} a_n z^n$ be an analytic function on${z:|z|<1}, hin H$ and$Omega_f(r)= sum_{n=0}^{infty} |a_n| r^n$. If$$eta_{fh}=varliminflimits_{ro1}frac{lnlnOmega_f(r)}{ln h(r)}=+infty,$$then Wiman's inequality$M_f(r)leq mu_f(r) ln^{1/2+delta}mu_f(r)$is true for all $rin (r_0, 1)ackslash E(delta)$, where $h-mbox{meas} E<+infty.$http://journals.pu.if.ua/index.php/cmp/article/view/51/43
spellingShingle Skaskiv O.B.
Kuryliak A.O.
Direct analogues of Wiman's inequality for analytic functions in the unit disc
Karpatsʹkì Matematičnì Publìkacìï
title Direct analogues of Wiman's inequality for analytic functions in the unit disc
title_full Direct analogues of Wiman's inequality for analytic functions in the unit disc
title_fullStr Direct analogues of Wiman's inequality for analytic functions in the unit disc
title_full_unstemmed Direct analogues of Wiman's inequality for analytic functions in the unit disc
title_short Direct analogues of Wiman's inequality for analytic functions in the unit disc
title_sort direct analogues of wiman s inequality for analytic functions in the unit disc
url http://journals.pu.if.ua/index.php/cmp/article/view/51/43
work_keys_str_mv AT skaskivob directanaloguesofwimansinequalityforanalyticfunctionsintheunitdisc
AT kuryliakao directanaloguesofwimansinequalityforanalyticfunctionsintheunitdisc