Direct analogues of Wiman's inequality for analytic functions in the unit disc
Let $f(z)=sum_{n=0}^{infty} a_n z^n$ be an analytic function on${z:|z|<1}, hin H$ and$Omega_f(r)= sum_{n=0}^{infty} |a_n| r^n$. If$$eta_{fh}=varliminflimits_{ro1}frac{lnlnOmega_f(r)}{ln h(r)}=+infty,$$then Wiman's inequality$M_f(r)leq mu_f(r) ln^{1/2+delta}mu_f(r)$is true for all $rin (r_0,...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vasyl Stefanyk Precarpathian National University
2010-06-01
|
Series: | Karpatsʹkì Matematičnì Publìkacìï |
Online Access: | http://journals.pu.if.ua/index.php/cmp/article/view/51/43 |
_version_ | 1818303599524970496 |
---|---|
author | Skaskiv O.B. Kuryliak A.O. |
author_facet | Skaskiv O.B. Kuryliak A.O. |
author_sort | Skaskiv O.B. |
collection | DOAJ |
description | Let $f(z)=sum_{n=0}^{infty} a_n z^n$ be an analytic function on${z:|z|<1}, hin H$ and$Omega_f(r)= sum_{n=0}^{infty} |a_n| r^n$. If$$eta_{fh}=varliminflimits_{ro1}frac{lnlnOmega_f(r)}{ln h(r)}=+infty,$$then Wiman's inequality$M_f(r)leq mu_f(r) ln^{1/2+delta}mu_f(r)$is true for all $rin (r_0, 1)ackslash E(delta)$, where $h-mbox{meas} E<+infty.$ |
first_indexed | 2024-12-13T05:57:22Z |
format | Article |
id | doaj.art-b167cde3ec6945efa75cf3d1a893d1fb |
institution | Directory Open Access Journal |
issn | 2075-9827 |
language | English |
last_indexed | 2024-12-13T05:57:22Z |
publishDate | 2010-06-01 |
publisher | Vasyl Stefanyk Precarpathian National University |
record_format | Article |
series | Karpatsʹkì Matematičnì Publìkacìï |
spelling | doaj.art-b167cde3ec6945efa75cf3d1a893d1fb2022-12-21T23:57:25ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272010-06-0121109118Direct analogues of Wiman's inequality for analytic functions in the unit discSkaskiv O.B.Kuryliak A.O.Let $f(z)=sum_{n=0}^{infty} a_n z^n$ be an analytic function on${z:|z|<1}, hin H$ and$Omega_f(r)= sum_{n=0}^{infty} |a_n| r^n$. If$$eta_{fh}=varliminflimits_{ro1}frac{lnlnOmega_f(r)}{ln h(r)}=+infty,$$then Wiman's inequality$M_f(r)leq mu_f(r) ln^{1/2+delta}mu_f(r)$is true for all $rin (r_0, 1)ackslash E(delta)$, where $h-mbox{meas} E<+infty.$http://journals.pu.if.ua/index.php/cmp/article/view/51/43 |
spellingShingle | Skaskiv O.B. Kuryliak A.O. Direct analogues of Wiman's inequality for analytic functions in the unit disc Karpatsʹkì Matematičnì Publìkacìï |
title | Direct analogues of Wiman's inequality for analytic functions in the unit disc |
title_full | Direct analogues of Wiman's inequality for analytic functions in the unit disc |
title_fullStr | Direct analogues of Wiman's inequality for analytic functions in the unit disc |
title_full_unstemmed | Direct analogues of Wiman's inequality for analytic functions in the unit disc |
title_short | Direct analogues of Wiman's inequality for analytic functions in the unit disc |
title_sort | direct analogues of wiman s inequality for analytic functions in the unit disc |
url | http://journals.pu.if.ua/index.php/cmp/article/view/51/43 |
work_keys_str_mv | AT skaskivob directanaloguesofwimansinequalityforanalyticfunctionsintheunitdisc AT kuryliakao directanaloguesofwimansinequalityforanalyticfunctionsintheunitdisc |