Monte-Carlo calculation of fission process for neutron-induced typical actinide nuclei fission

A global potential-driving model with well-determined parameters is proposed by uniting the empirical asymmetric fission potential and the empirical symmetric fission potential, which can precisely calculate the pre-neutron-emission mass distributions for neutron-induced actinide nuclei fission. Bas...

Full description

Bibliographic Details
Main Authors: Wei Zheng, Liu Changqi, Han Chao, Yao Zeen, Zhang Yu, Wang Junrun, Lu Xiaolong, Su Xiaodong, Xu Dapeng
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2020/15/epjconf_nd2019_05015.pdf
Description
Summary:A global potential-driving model with well-determined parameters is proposed by uniting the empirical asymmetric fission potential and the empirical symmetric fission potential, which can precisely calculate the pre-neutron-emission mass distributions for neutron-induced actinide nuclei fission. Based on the developed potential-driving model, Monte-Carlo code calculates the characteristics of fission reaction process for neutron-induced 241 Am fission. Typical calculated results, including yields, kinetic energy distributions, fission neutron spectrum and decay γ-ray spectrum, are compared with experimental data and evaluated data. It shows that the Monte-Carlo calculated results agree quite well with the experiment data, which indicate that Monte-Carlo code with the developed potential-driving model can reproduce and predict the characteristics of fission reaction process at reasonable energy ranges. Given the well predictions on the characteristics of fission reaction process, Monte-Carlo code with the developed potential-driving model can guide for the physical design of nuclear fission engineering.
ISSN:2100-014X