Positive solutions for a semipositone anisotropic p-Laplacian problem

Abstract In this paper, a semipositone anisotropic p-Laplacian problem − Δ p → u = λ f ( u ) , $$ -\Delta _{\overrightarrow{p}}u=\lambda f(u), $$ on a bounded domain with the Dirchlet boundary condition is considered, where A ( u q − 1 ) ≤ f ( u ) ≤ B ( u q − 1 ) $A(u^{q}-1)\leq f(u)\leq B(u^{q}-1)$...

Full description

Bibliographic Details
Main Authors: A. Razani, Giovany M. Figueiredo
Format: Article
Language:English
Published: SpringerOpen 2024-03-01
Series:Boundary Value Problems
Subjects:
Online Access:https://doi.org/10.1186/s13661-024-01841-7
_version_ 1797273831213105152
author A. Razani
Giovany M. Figueiredo
author_facet A. Razani
Giovany M. Figueiredo
author_sort A. Razani
collection DOAJ
description Abstract In this paper, a semipositone anisotropic p-Laplacian problem − Δ p → u = λ f ( u ) , $$ -\Delta _{\overrightarrow{p}}u=\lambda f(u), $$ on a bounded domain with the Dirchlet boundary condition is considered, where A ( u q − 1 ) ≤ f ( u ) ≤ B ( u q − 1 ) $A(u^{q}-1)\leq f(u)\leq B(u^{q}-1)$ for u > 0 $u>0$ , f ( 0 ) < 0 $f(0)<0$ and f ( u ) = 0 $f(u)=0$ for u ≤ − 1 $u\leq -1$ . It is proved that there exists λ ∗ > 0 $\lambda ^{*}>0$ such that if λ ∈ ( 0 , λ ∗ ) $\lambda \in (0,\lambda ^{*})$ , then the problem has a positive weak solution u λ ∈ L ∞ ( Ω ‾ ) $u_{\lambda}\in L^{\infty}(\overline{\Omega})$ via combining Mountain-Pass arguments, comparison principles, and regularity principles.
first_indexed 2024-03-07T14:49:51Z
format Article
id doaj.art-b171515b57a74fd88537dfdb5555181e
institution Directory Open Access Journal
issn 1687-2770
language English
last_indexed 2024-03-07T14:49:51Z
publishDate 2024-03-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj.art-b171515b57a74fd88537dfdb5555181e2024-03-05T19:48:05ZengSpringerOpenBoundary Value Problems1687-27702024-03-012024111310.1186/s13661-024-01841-7Positive solutions for a semipositone anisotropic p-Laplacian problemA. Razani0Giovany M. Figueiredo1Department of Pure Mathematics, Faculty of Science, Imam Khomeini International UniversityDepartamento de Matemática, Universidade de BrasíliaAbstract In this paper, a semipositone anisotropic p-Laplacian problem − Δ p → u = λ f ( u ) , $$ -\Delta _{\overrightarrow{p}}u=\lambda f(u), $$ on a bounded domain with the Dirchlet boundary condition is considered, where A ( u q − 1 ) ≤ f ( u ) ≤ B ( u q − 1 ) $A(u^{q}-1)\leq f(u)\leq B(u^{q}-1)$ for u > 0 $u>0$ , f ( 0 ) < 0 $f(0)<0$ and f ( u ) = 0 $f(u)=0$ for u ≤ − 1 $u\leq -1$ . It is proved that there exists λ ∗ > 0 $\lambda ^{*}>0$ such that if λ ∈ ( 0 , λ ∗ ) $\lambda \in (0,\lambda ^{*})$ , then the problem has a positive weak solution u λ ∈ L ∞ ( Ω ‾ ) $u_{\lambda}\in L^{\infty}(\overline{\Omega})$ via combining Mountain-Pass arguments, comparison principles, and regularity principles.https://doi.org/10.1186/s13661-024-01841-7Mountain-Pass TheoremSemipositone problemAnisotropic p-LaplacianPositive solutions
spellingShingle A. Razani
Giovany M. Figueiredo
Positive solutions for a semipositone anisotropic p-Laplacian problem
Boundary Value Problems
Mountain-Pass Theorem
Semipositone problem
Anisotropic p-Laplacian
Positive solutions
title Positive solutions for a semipositone anisotropic p-Laplacian problem
title_full Positive solutions for a semipositone anisotropic p-Laplacian problem
title_fullStr Positive solutions for a semipositone anisotropic p-Laplacian problem
title_full_unstemmed Positive solutions for a semipositone anisotropic p-Laplacian problem
title_short Positive solutions for a semipositone anisotropic p-Laplacian problem
title_sort positive solutions for a semipositone anisotropic p laplacian problem
topic Mountain-Pass Theorem
Semipositone problem
Anisotropic p-Laplacian
Positive solutions
url https://doi.org/10.1186/s13661-024-01841-7
work_keys_str_mv AT arazani positivesolutionsforasemipositoneanisotropicplaplacianproblem
AT giovanymfigueiredo positivesolutionsforasemipositoneanisotropicplaplacianproblem