Saponification of Diethyl Adipate with Sodium Hydroxide Using Reactive Distillation
This research presents a new study in reactive distillation by adopting a consecutive reaction . The adopted consecutive reaction was the saponification reaction of diethyl adipate with NaOH solution. The saponification reaction occurs in two steps. The distillation process had the role of withdraw...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Baghdad
2023-07-01
|
Series: | Journal of Engineering |
Subjects: | |
Online Access: | https://joe.uobaghdad.edu.iq/index.php/main/article/view/2578 |
Summary: | This research presents a new study in reactive distillation by adopting a consecutive reaction . The adopted consecutive reaction was the saponification reaction of diethyl adipate with NaOH solution. The saponification reaction occurs in two steps. The distillation process had the role of withdrawing the intermediate product i.e. monoethyl adipate from the reacting mixture before the second conversion to disodium adipate occurred. It was found that monoethyl adipate appeared successfully in the distillate liquid. The percentage conversion from di-ester to monoester was greatly enhanced (reaching 86%) relative to only 15.3% for the case of reaction without distillation .This means 5 times enhancement . The presence of two layers in both the distillate and residual liquids was noticed ,the upper (water) layer and the lower (ester) layer. However, water layer was dominant in the distillate .The percentage excess of NaOH solution was calculated with respect to the concentration of monoester (9%-79%) and it was found that increasing the concentration of NaOH solution( until 40%) led to increase in the percentage conversion to monoester. It also led to get a pure monoester in the distillate and made the residual liquid appear as one layer. Maximum conversion had been occurred in the rang (40%-60%). After 60% the percentage conversion lowered noticeably.
|
---|---|
ISSN: | 1726-4073 2520-3339 |