A user-driven machine learning approach for RNA-based sample discrimination and hierarchical classification

Summary: RNA-based sample discrimination and classification can be used to provide biological insights and/or distinguish between clinical groups. However, finding informative differences between sample groups can be challenging due to the multidimensional and noisy nature of sequencing data. Here,...

Full description

Bibliographic Details
Main Authors: Tashifa Imtiaz, Jina Nanayakkara, Alexis Fang, Danny Jomaa, Harrison Mayotte, Simona Damiani, Fiza Javed, Tristan Jones, Emily Kaczmarek, Flourish Omolara Adebayo, Uroosa Imtiaz, Yiheng Li, Richard Zhang, Parvin Mousavi, Neil Renwick, Kathrin Tyryshkin
Format: Article
Language:English
Published: Elsevier 2023-12-01
Series:STAR Protocols
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666166723006287
_version_ 1797647572049854464
author Tashifa Imtiaz
Jina Nanayakkara
Alexis Fang
Danny Jomaa
Harrison Mayotte
Simona Damiani
Fiza Javed
Tristan Jones
Emily Kaczmarek
Flourish Omolara Adebayo
Uroosa Imtiaz
Yiheng Li
Richard Zhang
Parvin Mousavi
Neil Renwick
Kathrin Tyryshkin
author_facet Tashifa Imtiaz
Jina Nanayakkara
Alexis Fang
Danny Jomaa
Harrison Mayotte
Simona Damiani
Fiza Javed
Tristan Jones
Emily Kaczmarek
Flourish Omolara Adebayo
Uroosa Imtiaz
Yiheng Li
Richard Zhang
Parvin Mousavi
Neil Renwick
Kathrin Tyryshkin
author_sort Tashifa Imtiaz
collection DOAJ
description Summary: RNA-based sample discrimination and classification can be used to provide biological insights and/or distinguish between clinical groups. However, finding informative differences between sample groups can be challenging due to the multidimensional and noisy nature of sequencing data. Here, we apply a machine learning approach for hierarchical discrimination and classification of samples with high-dimensional miRNA expression data. Our protocol comprises data preprocessing, unsupervised learning, feature selection, and machine-learning-based hierarchical classification, alongside open-source MATLAB code. : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
first_indexed 2024-03-11T15:19:26Z
format Article
id doaj.art-b19026798e34484280e1c315a445cfe6
institution Directory Open Access Journal
issn 2666-1667
language English
last_indexed 2024-03-11T15:19:26Z
publishDate 2023-12-01
publisher Elsevier
record_format Article
series STAR Protocols
spelling doaj.art-b19026798e34484280e1c315a445cfe62023-10-29T04:20:16ZengElsevierSTAR Protocols2666-16672023-12-0144102661A user-driven machine learning approach for RNA-based sample discrimination and hierarchical classificationTashifa Imtiaz0Jina Nanayakkara1Alexis Fang2Danny Jomaa3Harrison Mayotte4Simona Damiani5Fiza Javed6Tristan Jones7Emily Kaczmarek8Flourish Omolara Adebayo9Uroosa Imtiaz10Yiheng Li11Richard Zhang12Parvin Mousavi13Neil Renwick14Kathrin Tyryshkin15Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6, Canada; Corresponding authorLaboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6, CanadaLaboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6, CanadaSchool of Medicine, Faculty of Health Sciences, Queen’s University, 80 Barrie St, Kingston, ON K7L 3N6, CanadaLaboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6, CanadaLaboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6, CanadaLaboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6, CanadaLaboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6, CanadaMedical Informatics Laboratory, School of Computing, Queen’s University, 557 Goodwin Hall, Kingston, ON K7L 2N8, CanadaMedical Informatics Laboratory, School of Computing, Queen’s University, 557 Goodwin Hall, Kingston, ON K7L 2N8, CanadaSchool of Computing, Queen’s University, 557 Goodwin Hall, Kingston, ON K7L 2N8, CanadaSchool of Computing, Queen’s University, 557 Goodwin Hall, Kingston, ON K7L 2N8, CanadaLaboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6, CanadaMedical Informatics Laboratory, School of Computing, Queen’s University, 557 Goodwin Hall, Kingston, ON K7L 2N8, CanadaLaboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6, CanadaLaboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6, Canada; School of Computing, Queen’s University, 557 Goodwin Hall, Kingston, ON K7L 2N8, Canada; Corresponding authorSummary: RNA-based sample discrimination and classification can be used to provide biological insights and/or distinguish between clinical groups. However, finding informative differences between sample groups can be challenging due to the multidimensional and noisy nature of sequencing data. Here, we apply a machine learning approach for hierarchical discrimination and classification of samples with high-dimensional miRNA expression data. Our protocol comprises data preprocessing, unsupervised learning, feature selection, and machine-learning-based hierarchical classification, alongside open-source MATLAB code. : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.http://www.sciencedirect.com/science/article/pii/S2666166723006287BioinformaticsGene ExpressionRNAseqSequence AnalysisSequencing
spellingShingle Tashifa Imtiaz
Jina Nanayakkara
Alexis Fang
Danny Jomaa
Harrison Mayotte
Simona Damiani
Fiza Javed
Tristan Jones
Emily Kaczmarek
Flourish Omolara Adebayo
Uroosa Imtiaz
Yiheng Li
Richard Zhang
Parvin Mousavi
Neil Renwick
Kathrin Tyryshkin
A user-driven machine learning approach for RNA-based sample discrimination and hierarchical classification
STAR Protocols
Bioinformatics
Gene Expression
RNAseq
Sequence Analysis
Sequencing
title A user-driven machine learning approach for RNA-based sample discrimination and hierarchical classification
title_full A user-driven machine learning approach for RNA-based sample discrimination and hierarchical classification
title_fullStr A user-driven machine learning approach for RNA-based sample discrimination and hierarchical classification
title_full_unstemmed A user-driven machine learning approach for RNA-based sample discrimination and hierarchical classification
title_short A user-driven machine learning approach for RNA-based sample discrimination and hierarchical classification
title_sort user driven machine learning approach for rna based sample discrimination and hierarchical classification
topic Bioinformatics
Gene Expression
RNAseq
Sequence Analysis
Sequencing
url http://www.sciencedirect.com/science/article/pii/S2666166723006287
work_keys_str_mv AT tashifaimtiaz auserdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT jinananayakkara auserdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT alexisfang auserdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT dannyjomaa auserdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT harrisonmayotte auserdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT simonadamiani auserdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT fizajaved auserdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT tristanjones auserdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT emilykaczmarek auserdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT flourishomolaraadebayo auserdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT uroosaimtiaz auserdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT yihengli auserdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT richardzhang auserdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT parvinmousavi auserdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT neilrenwick auserdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT kathrintyryshkin auserdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT tashifaimtiaz userdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT jinananayakkara userdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT alexisfang userdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT dannyjomaa userdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT harrisonmayotte userdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT simonadamiani userdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT fizajaved userdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT tristanjones userdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT emilykaczmarek userdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT flourishomolaraadebayo userdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT uroosaimtiaz userdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT yihengli userdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT richardzhang userdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT parvinmousavi userdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT neilrenwick userdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification
AT kathrintyryshkin userdrivenmachinelearningapproachforrnabasedsamplediscriminationandhierarchicalclassification