Automatic monitoring of surface water dynamics using Sentinel-1 and Sentinel-2 data with Google Earth Engine

Dynamic monitoring of floods is important for water resource management and disaster prevention. Obtaining multitemporal surface water distribution maps using remote sensing technology can help in elucidating the trends in water expansion so that measures can be quickly formulated. Sentinel-1 synthe...

Full description

Bibliographic Details
Main Authors: Zhiheng Chen, Shuhe Zhao
Format: Article
Language:English
Published: Elsevier 2022-09-01
Series:International Journal of Applied Earth Observations and Geoinformation
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1569843222001984
_version_ 1811272156728786944
author Zhiheng Chen
Shuhe Zhao
author_facet Zhiheng Chen
Shuhe Zhao
author_sort Zhiheng Chen
collection DOAJ
description Dynamic monitoring of floods is important for water resource management and disaster prevention. Obtaining multitemporal surface water distribution maps using remote sensing technology can help in elucidating the trends in water expansion so that measures can be quickly formulated. Sentinel-1 synthetic aperture radar (SAR) observation data are particularly suitable for this task because of their high spatial resolution and short revisit cycle, as well as its cloud-penetration ability. However, quickly and accurately mapping floods from a large number of SAR images remains challenging because of the enormous pressure on data acquisition and processing. Hence, in this study, we designed a new automatic SAR image flood mapping method based on the Google Earth Engine (GEE) cloud platform, which is an improvement over the Otsu method, and solves the problem of a higher segmentation threshold caused by images that do not meet the bimodal distribution hypothesis. In addition, to eliminate the omissions caused by salt-and-pepper noise and the misclassification caused mainly by low-backscattering-intensity vegetation and mountain shadows, we constructed an algorithm based on topological relationships and a DSM (Digital Surface Model) local search algorithm. The proposed method achieved an accuracy of 96.213% and 98.611% and F1 scores of 0.87254 and 0.89298 for plains and mountainous terrain, respectively. This method uses powerful computing resources and abundant datasets provided by the GEE cloud platform, and can be used for large-scale, long-term, and dynamic flood monitoring.
first_indexed 2024-04-12T22:35:13Z
format Article
id doaj.art-b19dd83062b4440596dae4f1731cafeb
institution Directory Open Access Journal
issn 1569-8432
language English
last_indexed 2024-04-12T22:35:13Z
publishDate 2022-09-01
publisher Elsevier
record_format Article
series International Journal of Applied Earth Observations and Geoinformation
spelling doaj.art-b19dd83062b4440596dae4f1731cafeb2022-12-22T03:13:53ZengElsevierInternational Journal of Applied Earth Observations and Geoinformation1569-84322022-09-01113103010Automatic monitoring of surface water dynamics using Sentinel-1 and Sentinel-2 data with Google Earth EngineZhiheng Chen0Shuhe Zhao1Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, ChinaJiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China; Corresponding author at: School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu 210023, China.Dynamic monitoring of floods is important for water resource management and disaster prevention. Obtaining multitemporal surface water distribution maps using remote sensing technology can help in elucidating the trends in water expansion so that measures can be quickly formulated. Sentinel-1 synthetic aperture radar (SAR) observation data are particularly suitable for this task because of their high spatial resolution and short revisit cycle, as well as its cloud-penetration ability. However, quickly and accurately mapping floods from a large number of SAR images remains challenging because of the enormous pressure on data acquisition and processing. Hence, in this study, we designed a new automatic SAR image flood mapping method based on the Google Earth Engine (GEE) cloud platform, which is an improvement over the Otsu method, and solves the problem of a higher segmentation threshold caused by images that do not meet the bimodal distribution hypothesis. In addition, to eliminate the omissions caused by salt-and-pepper noise and the misclassification caused mainly by low-backscattering-intensity vegetation and mountain shadows, we constructed an algorithm based on topological relationships and a DSM (Digital Surface Model) local search algorithm. The proposed method achieved an accuracy of 96.213% and 98.611% and F1 scores of 0.87254 and 0.89298 for plains and mountainous terrain, respectively. This method uses powerful computing resources and abundant datasets provided by the GEE cloud platform, and can be used for large-scale, long-term, and dynamic flood monitoring.http://www.sciencedirect.com/science/article/pii/S1569843222001984Sentinel-1 SARGoogle Earth EngineFlood mappingDynamic monitoring
spellingShingle Zhiheng Chen
Shuhe Zhao
Automatic monitoring of surface water dynamics using Sentinel-1 and Sentinel-2 data with Google Earth Engine
International Journal of Applied Earth Observations and Geoinformation
Sentinel-1 SAR
Google Earth Engine
Flood mapping
Dynamic monitoring
title Automatic monitoring of surface water dynamics using Sentinel-1 and Sentinel-2 data with Google Earth Engine
title_full Automatic monitoring of surface water dynamics using Sentinel-1 and Sentinel-2 data with Google Earth Engine
title_fullStr Automatic monitoring of surface water dynamics using Sentinel-1 and Sentinel-2 data with Google Earth Engine
title_full_unstemmed Automatic monitoring of surface water dynamics using Sentinel-1 and Sentinel-2 data with Google Earth Engine
title_short Automatic monitoring of surface water dynamics using Sentinel-1 and Sentinel-2 data with Google Earth Engine
title_sort automatic monitoring of surface water dynamics using sentinel 1 and sentinel 2 data with google earth engine
topic Sentinel-1 SAR
Google Earth Engine
Flood mapping
Dynamic monitoring
url http://www.sciencedirect.com/science/article/pii/S1569843222001984
work_keys_str_mv AT zhihengchen automaticmonitoringofsurfacewaterdynamicsusingsentinel1andsentinel2datawithgoogleearthengine
AT shuhezhao automaticmonitoringofsurfacewaterdynamicsusingsentinel1andsentinel2datawithgoogleearthengine