Perbandingan Arsitektur ResNet50 dan ResNet101 dalam Klasifikasi Kanker Serviks pada Citra Pap Smear
Cervical cancer is one of the most deadly types of cancer in women. According to Ferlay et al. (2018) cervical cancer ranks second for the type of cancer that attacks women the most. Data from the Indonesian Ministry of Health, there are at least 15000 cases of cervical cancer every year in Indonesi...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | Indonesian |
Published: |
Lembaga Penelitian Universitas Indraprasta PGRI
2021-10-01
|
Series: | Faktor Exacta |
Online Access: | https://journal.lppmunindra.ac.id/index.php/Faktor_Exacta/article/view/10010 |
_version_ | 1819240955867299840 |
---|---|
author | Za'imatun Niswati Rahayuning Hardatin Meia Noer Muslimah Siti Nur Hasanah |
author_facet | Za'imatun Niswati Rahayuning Hardatin Meia Noer Muslimah Siti Nur Hasanah |
author_sort | Za'imatun Niswati |
collection | DOAJ |
description | Cervical cancer is one of the most deadly types of cancer in women. According to Ferlay et al. (2018) cervical cancer ranks second for the type of cancer that attacks women the most. Data from the Indonesian Ministry of Health, there are at least 15000 cases of cervical cancer every year in Indonesia. This cancer is a type of tumor that develops in the epithelial tissue of the cervix. In addition to HPV vaccination, cervical cancer detection can also be carried out with a Pap smear test and VIA examination supported by medical image tests such as CT scan, microscopic and MRI (Akbar et al. 2021). Pap smear test is a type of test to detect cervical cancer which is quite widely used because the cost of the test is cheaper than the HPV vaccination. This test is carried out by taking samples of uterine cells which are then analyzed for early detection of cervical cancer (BPJS Kesehatan 2020). Through a pap smear can be found the presence of HPV infection and abnormal cells that can turn into cancer cells. The purpose of this research is to apply the ResNet50 and ResNet101 architectures on pap smear images to identify cervical cancer and evaluate the performance of the ResNet50 and ResNet101 architectures in the classification of cervical cancer on pap smear images. In this study, CNN ResNet50 and ResNet101 were used to classify cervical cancer on pap smear images. This study has created two models to predict the grade of cervical cancer on pap smear images. The ResNet50 architecture gets 91% accuracy while the ResNet101 architecture gets 89%. Although the architecture of ResNet101 is more complex than ResNet50, but if viewed from the results of the model evaluation, ResNet101 has a worse performance. This is due to the relatively small training data when trained with a large architecture such as ResNet101, not necessarily resulting in better accuracy. |
first_indexed | 2024-12-23T14:16:14Z |
format | Article |
id | doaj.art-b1bec3ada2134326891a09177c650492 |
institution | Directory Open Access Journal |
issn | 1979-276X 2502-339X |
language | Indonesian |
last_indexed | 2024-12-23T14:16:14Z |
publishDate | 2021-10-01 |
publisher | Lembaga Penelitian Universitas Indraprasta PGRI |
record_format | Article |
series | Faktor Exacta |
spelling | doaj.art-b1bec3ada2134326891a09177c6504922022-12-21T17:43:54ZindLembaga Penelitian Universitas Indraprasta PGRIFaktor Exacta1979-276X2502-339X2021-10-0114316016710.30998/faktorexacta.v14i3.100104022Perbandingan Arsitektur ResNet50 dan ResNet101 dalam Klasifikasi Kanker Serviks pada Citra Pap SmearZa'imatun Niswati0Rahayuning Hardatin1Meia Noer Muslimah2Siti Nur Hasanah3Teknik Informatika-UnindraIPB UniversityIPB UniversityIPB UniversityCervical cancer is one of the most deadly types of cancer in women. According to Ferlay et al. (2018) cervical cancer ranks second for the type of cancer that attacks women the most. Data from the Indonesian Ministry of Health, there are at least 15000 cases of cervical cancer every year in Indonesia. This cancer is a type of tumor that develops in the epithelial tissue of the cervix. In addition to HPV vaccination, cervical cancer detection can also be carried out with a Pap smear test and VIA examination supported by medical image tests such as CT scan, microscopic and MRI (Akbar et al. 2021). Pap smear test is a type of test to detect cervical cancer which is quite widely used because the cost of the test is cheaper than the HPV vaccination. This test is carried out by taking samples of uterine cells which are then analyzed for early detection of cervical cancer (BPJS Kesehatan 2020). Through a pap smear can be found the presence of HPV infection and abnormal cells that can turn into cancer cells. The purpose of this research is to apply the ResNet50 and ResNet101 architectures on pap smear images to identify cervical cancer and evaluate the performance of the ResNet50 and ResNet101 architectures in the classification of cervical cancer on pap smear images. In this study, CNN ResNet50 and ResNet101 were used to classify cervical cancer on pap smear images. This study has created two models to predict the grade of cervical cancer on pap smear images. The ResNet50 architecture gets 91% accuracy while the ResNet101 architecture gets 89%. Although the architecture of ResNet101 is more complex than ResNet50, but if viewed from the results of the model evaluation, ResNet101 has a worse performance. This is due to the relatively small training data when trained with a large architecture such as ResNet101, not necessarily resulting in better accuracy.https://journal.lppmunindra.ac.id/index.php/Faktor_Exacta/article/view/10010 |
spellingShingle | Za'imatun Niswati Rahayuning Hardatin Meia Noer Muslimah Siti Nur Hasanah Perbandingan Arsitektur ResNet50 dan ResNet101 dalam Klasifikasi Kanker Serviks pada Citra Pap Smear Faktor Exacta |
title | Perbandingan Arsitektur ResNet50 dan ResNet101 dalam Klasifikasi Kanker Serviks pada Citra Pap Smear |
title_full | Perbandingan Arsitektur ResNet50 dan ResNet101 dalam Klasifikasi Kanker Serviks pada Citra Pap Smear |
title_fullStr | Perbandingan Arsitektur ResNet50 dan ResNet101 dalam Klasifikasi Kanker Serviks pada Citra Pap Smear |
title_full_unstemmed | Perbandingan Arsitektur ResNet50 dan ResNet101 dalam Klasifikasi Kanker Serviks pada Citra Pap Smear |
title_short | Perbandingan Arsitektur ResNet50 dan ResNet101 dalam Klasifikasi Kanker Serviks pada Citra Pap Smear |
title_sort | perbandingan arsitektur resnet50 dan resnet101 dalam klasifikasi kanker serviks pada citra pap smear |
url | https://journal.lppmunindra.ac.id/index.php/Faktor_Exacta/article/view/10010 |
work_keys_str_mv | AT zaimatunniswati perbandinganarsitekturresnet50danresnet101dalamklasifikasikankerservikspadacitrapapsmear AT rahayuninghardatin perbandinganarsitekturresnet50danresnet101dalamklasifikasikankerservikspadacitrapapsmear AT meianoermuslimah perbandinganarsitekturresnet50danresnet101dalamklasifikasikankerservikspadacitrapapsmear AT sitinurhasanah perbandinganarsitekturresnet50danresnet101dalamklasifikasikankerservikspadacitrapapsmear |