Stochastic Smoothing Methods for Nonsmooth Global Optimization
Abstract. The paper presents the results of testing the stochastic smoothing method for global optimization of a multiextremal function in a convex feasible subset of Euclidean space. Preliminarily, the objective function is extended outside the admissible region so that its global minimum does not...
Κύριος συγγραφέας: | V.I. Norkin |
---|---|
Μορφή: | Άρθρο |
Γλώσσα: | English |
Έκδοση: |
V.M. Glushkov Institute of Cybernetics
2020-03-01
|
Σειρά: | Кібернетика та комп'ютерні технології |
Θέματα: | |
Διαθέσιμο Online: | http://cctech.org.ua/13-vertikalnoe-menyu-en/89-abstract-20-1-1-arte |
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Acceleration in first-order optimization methods: promenading beyond convexity or smoothness, and applications
ανά: Martinez Rubio, D
Έκδοση: (2021) -
Short Paper - A note on the Frank–Wolfe algorithm for a class of nonconvex and nonsmooth optimization problems
ανά: de Oliveira, Welington
Έκδοση: (2023-01-01) -
Bundle Enrichment Method for Nonsmooth Difference of Convex Programming Problems
ανά: Manlio Gaudioso, κ.ά.
Έκδοση: (2023-08-01) -
Efficiency of subgradient method in solving nonsmooth optimization problems /
ανά: Nur Azira Abdullah, 1990-, κ.ά.
Έκδοση: (2014) -
A one-parameter filled function for nonsmooth global optimization and its application /
ανά: Zhang, Ying, κ.ά.