Stochastic Smoothing Methods for Nonsmooth Global Optimization
Abstract. The paper presents the results of testing the stochastic smoothing method for global optimization of a multiextremal function in a convex feasible subset of Euclidean space. Preliminarily, the objective function is extended outside the admissible region so that its global minimum does not...
Huvudupphovsman: | V.I. Norkin |
---|---|
Materialtyp: | Artikel |
Språk: | English |
Publicerad: |
V.M. Glushkov Institute of Cybernetics
2020-03-01
|
Serie: | Кібернетика та комп'ютерні технології |
Ämnen: | |
Länkar: | http://cctech.org.ua/13-vertikalnoe-menyu-en/89-abstract-20-1-1-arte |
Liknande verk
Liknande verk
-
Acceleration in first-order optimization methods: promenading beyond convexity or smoothness, and applications
av: Martinez Rubio, D
Publicerad: (2021) -
Short Paper - A note on the Frank–Wolfe algorithm for a class of nonconvex and nonsmooth optimization problems
av: de Oliveira, Welington
Publicerad: (2023-01-01) -
Bundle Enrichment Method for Nonsmooth Difference of Convex Programming Problems
av: Manlio Gaudioso, et al.
Publicerad: (2023-08-01) -
Efficiency of subgradient method in solving nonsmooth optimization problems /
av: Nur Azira Abdullah, 1990-, et al.
Publicerad: (2014) -
A one-parameter filled function for nonsmooth global optimization and its application /
av: Zhang, Ying, et al.