Stochastic Smoothing Methods for Nonsmooth Global Optimization
Abstract. The paper presents the results of testing the stochastic smoothing method for global optimization of a multiextremal function in a convex feasible subset of Euclidean space. Preliminarily, the objective function is extended outside the admissible region so that its global minimum does not...
主要作者: | V.I. Norkin |
---|---|
格式: | Article |
語言: | English |
出版: |
V.M. Glushkov Institute of Cybernetics
2020-03-01
|
叢編: | Кібернетика та комп'ютерні технології |
主題: | |
在線閱讀: | http://cctech.org.ua/13-vertikalnoe-menyu-en/89-abstract-20-1-1-arte |
相似書籍
-
Acceleration in first-order optimization methods: promenading beyond convexity or smoothness, and applications
由: Martinez Rubio, D
出版: (2021) -
Short Paper - A note on the Frank–Wolfe algorithm for a class of nonconvex and nonsmooth optimization problems
由: de Oliveira, Welington
出版: (2023-01-01) -
Bundle Enrichment Method for Nonsmooth Difference of Convex Programming Problems
由: Manlio Gaudioso, et al.
出版: (2023-08-01) -
Efficiency of subgradient method in solving nonsmooth optimization problems /
由: Nur Azira Abdullah, 1990-, et al.
出版: (2014) -
A one-parameter filled function for nonsmooth global optimization and its application /
由: Zhang, Ying, et al.