A Two-Dimensional Phase-Field Investigation on Unidirectionally Solidified Tip-Splitting Microstructures

The onset of morphological instabilities along a solidifying interface has a tendency to influence the microstructural characteristics of cast alloys. In the present study, the initiation as well as the mechanism of microstructural pattern formation is investigated by a quantitative phase-field appr...

Full description

Bibliographic Details
Main Authors: V. Pavan Laxmipathy, Fei Wang, Michael Selzer, Britta Nestler
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/12/3/376
Description
Summary:The onset of morphological instabilities along a solidifying interface has a tendency to influence the microstructural characteristics of cast alloys. In the present study, the initiation as well as the mechanism of microstructural pattern formation is investigated by a quantitative phase-field approach. For energetically isotropic interfaces, we show that the presence of grain boundary grooves promotes the initiation of morphological instabilities, and with progressive solidification, they subsequently amplify into tip-splitting microstructures. We also demonstrate that the grain boundary groove shape influences the amplification of the ridge-shaped instability near the pit region. The structural transition of tip splitting to dendritic microstructures is showcased through the effect of interfacial anisotropy. In addition, the prediction of the tip-splitting position is discussed through an analytical criterion, wherein the sign of the surface Laplacian of interfacial curvature dictates the formation of crest and trough positions in a tip-splitting pattern. In complete agreement with the sharp-interface theory, our phase-field simulations validate the analytically obtained tip-splitting position and suggest that the two tips evolve symmetrically on either side of the hindered concave region. Furthermore, the role of lattice anisotropy on the tip-splitting phenomenon is also discussed in detail.
ISSN:2075-4701