THE METHOD OF ANALYTICAL SYNCHRONIZATION OF THE WORKING PROCESS DATA MONITORING IN TRANSPORT DIESEL ENGINES OPERATING
An analytical synchronization for data of the transport diesel engines working process is a key issue of this publication. Of particular importance is that workflow data refers to engines in use. The lack of accuracy in determining the current characteristics of the working process is the cause of a...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
National Aerospace University «Kharkiv Aviation Institute»
2020-08-01
|
Series: | Авіаційно-космічна техніка та технологія |
Subjects: | |
Online Access: | http://nti.khai.edu/ojs/index.php/aktt/article/view/1225 |
Summary: | An analytical synchronization for data of the transport diesel engines working process is a key issue of this publication. Of particular importance is that workflow data refers to engines in use. The lack of accuracy in determining the current characteristics of the working process is the cause of a significant error in determining power, fuel consumption, errors in monitoring the operation of engine systems, and its diagnosis. Calculation of the effective power of marine diesel engines is necessary not only to control the workflow and diagnose problems. It is also important for energy efficiency management as part of the Ship Energy Efficiency Management Plan (SEEMP). The task of analytical synchronization is formulated as the transfer of data of a function by time to a function by the angle of rotation of the crankshaft. In this case, it becomes possible to determine the top dead center (TDC) most correctly. As the basis of the method of analytical data synchronization for determining TDC coordinates, it is proposed to use the sequential execution of three stages: linear, sinusoidal, and differential (compression pressure’s first derivative is equal to zero). In addition, refinements have been made to linear and sinusoidal synchronization algorithms. They differ from their existing counterparts in using detailed restrictions. This allows one to have a further reduction of the error in TDC determining to a range of 0.1 ... 0.3 degrees of the crankshaft rotation. Also, this ensures the accuracy of the indicated power calculation and other basic workflow parameters with a maximum relative error of up to 2.5%. Obviously, such high accuracy allows avoiding diagnostic errors as much as possible, predicting the engine load, performing more exact calculations of parameters and characteristics, and taking measures to achieve higher energy efficiency and economy. Undoubtedly, this helps to increase the efficiency of both transport engines in general and marine engines in particular. |
---|---|
ISSN: | 1727-7337 2663-2217 |