Microscopic morphology modeling and prediction of flexible polished surface with belt flapwheel

Flexible polishing technology is widely used in the precision machining of aero-engine blisk blades. It has become one of the important research contents of flexible polishing technology to systematically study the flexible polishing process and understand the connotation of the microscopic morpholo...

Full description

Bibliographic Details
Main Authors: CHEN Zhen, ZHAO Pan, YAN Rui, SHI Nuo, SHI Kaining, SHI Yaoyao
Format: Article
Language:zho
Published: EDP Sciences 2024-02-01
Series:Xibei Gongye Daxue Xuebao
Subjects:
Online Access:https://www.jnwpu.org/articles/jnwpu/full_html/2024/01/jnwpu2024421p62/jnwpu2024421p62.html
Description
Summary:Flexible polishing technology is widely used in the precision machining of aero-engine blisk blades. It has become one of the important research contents of flexible polishing technology to systematically study the flexible polishing process and understand the connotation of the microscopic morphology of the polished surface. In this paper, the flapwheel is used as a flexible abrasive tool, and the spatial kinematics model for the abrasive grains on the surface of the flapwheel and the geometric interference model for the abrasive grains and workpiece are established by transforming the spatial geometric coordinates. Based on the surface topography model for the abrasive tool, MATLAB software was used to simulate the micro topography generation process of the flexible polishing surface with flapwheel as abrasive tool, and the three-dimensional topography of the workpiece surface and its influence law under different process parameters were obtained. The polishing experimental results verified the simulation algorithm correctness and effectiveness.
ISSN:1000-2758
2609-7125