Global attractivity of a higher order nonlinear difference equation with unimodal terms
In the present paper, we study the asymptotic behavior of the following higher order nonlinear difference equation with unimodal terms \[x(n+1)= ax(n)+ bx(n)g(x(n)) + cx(n-k)g(x(n-k)), \quad n=0, 1, \ldots,\] where \(a\), \(b\) and \(c\) are constants with \(0\lt a\lt 1\), \(0\leq b\lt 1\), \(0\leq...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
AGH Univeristy of Science and Technology Press
2023-03-01
|
Series: | Opuscula Mathematica |
Subjects: | |
Online Access: | https://www.opuscula.agh.edu.pl/vol43/2/art/opuscula_math_4308.pdf |
Summary: | In the present paper, we study the asymptotic behavior of the following higher order nonlinear difference equation with unimodal terms \[x(n+1)= ax(n)+ bx(n)g(x(n)) + cx(n-k)g(x(n-k)), \quad n=0, 1, \ldots,\] where \(a\), \(b\) and \(c\) are constants with \(0\lt a\lt 1\), \(0\leq b\lt 1\), \(0\leq c \lt 1\) and \(a+b+c=1\), \(g\in C[[0, \infty), [0, \infty)]\) is decreasing, and \(k\) is a positive integer. We obtain some new sufficient conditions for the global attractivity of positive solutions of the equation. Applications to some population models are also given. |
---|---|
ISSN: | 1232-9274 |